GRAMMARS

David Kauchak	some slides adapied from CS457 - Spring 2011 Ray Mooney

Admin

\square Assignment 2
\square Assignment 3
\square Technically due Sunday Oct. 16 at midnight

- Work in pairs
\square Any programming language
\square Given example output

Constituency	likes to eat candy.
determiner nouns	
Dave	The man Professor Kauchak Dr. Suess The boy The cat
pronouns determiner nouns + He The man that I saw The boy with the blue pants The cat in the hat	

Constituency
\square
Wroups (parts of speech)
\quadGroups of words (aka phrases) can also be grouped into functional groups \square often some relation to parts of speech \square though, more complex interactions
\square These phrase groups are called constituents

Common constituents
He likes to eat candy. noun phrase verb phrase The man in the hat ran to the park. noun phrase verb phrase

Syntactic structure

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park)))))!

Syntactic structure

(S (NP (NP (DT the) (NN mann) (PP (iN in) (NP (DT the) (NN hat))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park))11)), (1)
(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to) (NP (DT the) (NN park))))))

Syntactic structure

\square A number of related problems:
\square Given a sentence, can we determine the syntactic structure?
\square Can we determine if a sentence is grammatical?

- Can we determine how likely a sentence is to be grammatical? to be an English sentence?
\square Can we generate candidate, grammatical sentences?

Grammars

\square Grammar is a set of structural rules that govern the composition of sentences, phrases and words
\square Lots of different kinds of grammars:
\square regular

- context-free
\square context-sensitive
\square recursively enumerable
\square transformation grammars

Context free grammar
Formally...
$G=(N T, T, P, S)$
$\square N T:$ finite set of nonterminal symbols
\square T: finite set of terminal symbols, NT and T are
disjoint
$\square P:$ finite set of productions of the form
$A \rightarrow \alpha, A \in V$ and $\alpha \in(T \cup N T)^{*}$
$\square S \in N T:$ start symbol

Grammar questions
\square Can we determine if a sentence is grammatical?
\squareGiven a sentence, can we determine the syntactic structure?
\squareCan we determine how likely a sentence is to be grammatical? to be an English sentence?
\square Can we generate candidate, grammatical sentences?
Which of these can we answer with
a CFG? How?

CFG: Example

\square Many possible CFGs for English, here is an example (fragment):
$\square S \rightarrow N P V P$
$\square V P \rightarrow V N P$
$\square N P \rightarrow \operatorname{DetP} N \mid A d j P N P$
\square AdjP \rightarrow Adj \| Adv AdjP
$\square \mathrm{N} \rightarrow$ boy \| girl
$\square V \rightarrow$ sees \| likes
\square Adj \rightarrow big | small
\square Adv \rightarrow very
$\square \operatorname{DetP} \rightarrow \mathrm{a} \mid$ the

Grammar questions

\square Can we determine if a sentence is grammatical? - Is it accepted/recognized by the grammar \square Applying rules right to left, do we get the start symbol?
\square Given a sentence, can we determine the syntactic structure? \square Keep track of the rules applied...
\square Can we determine how likely a sentence is to be grammatical? to be an English sentence? - Not yet... no notion of "likelihood" (probability)
\square Can we generate candidate, grammatical sentences? - Start from the start symbol, randomly pick rules that apply (i.e. left hand side matches)

Derivations in a CFG	
$\begin{aligned} & S \rightarrow N P V P \\ & V P \rightarrow V N P \\ & N P \rightarrow \text { DetP } \mid \text { AdiP } N P \\ & \text { AdiP } \rightarrow \text { Adi \| Adv AdiP } \\ & N \rightarrow \text { boy } \mid \text { girl } \\ & V \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big } \mid \text { small } \\ & \text { Adv } \rightarrow \text { very } \\ & \text { DetP } \rightarrow \text { a } \mid \text { the } \end{aligned}$	the boy likes a girl

Derivations in a CFG; Order of Derivation Irrelevant		
$S \rightarrow N P V P$ $\mathrm{VP} \rightarrow \mathrm{VNP}$ $N P \rightarrow$ DetP $N \mid A d j P N P$ AdjP \rightarrow Adj \mid Adv AdjP $N \rightarrow$ boy \\| girl $\vee \rightarrow$ sees \| likes Adi \rightarrow big \mid small Adv \rightarrow very $\operatorname{DetP} \rightarrow a \mid$ the	the boy likes a girl	

Derivations of CFGs

\square String rewriting system: we derive a string
\square But derivation history represented by phrasestructure tree

Parsing
\squareParsing is the field of NLP interested in automatically determining the syntactic structure of a sentence \square parsing can be thought of as determining what sentences are "valid" English sentences \square As a by product, we often can get the structure

Parsing

\square Given a CFG and a sentence, determine the possible parse tree(s)

S -> NP VP	I eat sushi with tuna
NP -> N	
NP -> PRP	
NP -> N PP	What parse trees are possible for this sentence?
VP -> V NP	
VP -> VNP PP	What if the grammar is much larger?
PP -> IN N	
PRP -> I	
V-> eat	
N -> sushi	
N -> tuna	
IN -> with	

Parsing

Parsing ambiguity

Parsing problems
\square Pick a model - e.g. CFG, PCFG, ...
\square Train (or learn) a model
\square What CFG/PCFG rules should I use?
\square Parameters (e.g. PCFG probabilities)?
\square What kind of data do we have?
\square Parsing
\square Determine the parse tree(s) given a sentence

Estimating PCFG Probabilities

\square Extract the rules from the trees
\square Calculate the probabilities using MLE

$$
\alpha \rightarrow \beta \quad \square p(\alpha \rightarrow \beta \mid \alpha)
$$

$P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{count}(\alpha \rightarrow \beta)}{\sum \operatorname{count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{count}(\alpha \rightarrow \beta)}{\operatorname{count}(\alpha)}$

Grammar Equivalence

\square Weak equivalence: grammars generate same set of strings
\square Grammar 1: NP $\rightarrow \operatorname{DetP} N$ and $\operatorname{DetP} \rightarrow a \mid$ the
\square Grammar 2: $N P \rightarrow a N \mid N P \rightarrow$ the N
\square Strong equivalence: grammars have same set of derivation trees
\square With CFGs, possible only with useless rules
\square Grammar 2: NP \rightarrow a $N \mid N P \rightarrow$ the N

- Grammar 3: NP \rightarrow a $N \mid N P \rightarrow$ the $N, \operatorname{DetP} \rightarrow$ many

Normal Forms
\square
There are weakly equivalent normal forms (Chomsky
Normal Form, Greibach Normal Form)
\square A CFG is in Chomsky Normal Form (CNF) if all
productions are of one of two forms:
$\square A \rightarrow B C$ with A, B, C nonterminals
$\square A \rightarrow a$, with A a nonterminal and a a terminal
\square

Grammar questions

\square Can we determine if a sentence is grammatical?
\square Given a sentence, can we determine the syntactic structure?
\square Can we determine how likely a sentence is to be grammatical? to be an English sentence?
\square Can we generate candidate, grammatical sentences?

Parsing

\square We have a grammar, determine the possible parse tree(s)
\square Let's start with parsing with a CFG (no probabilities)

$S \rightarrow>N P V P$	I eat sushi with tuna
$N P \rightarrow P R P$	
$N P \rightarrow N P P$	
$V P>V N P$	
$V P \rightarrow V N P P P$	
$P P \rightarrow I N N$	approaches?
$P R P \rightarrow I$	
$V \rightarrow>$ eat	
$N \rightarrow>$ sushi	
$N \rightarrow>$ tuna	
$\mathbb{N} \rightarrow>$ with	

Top Down Parsing

Bottom Up Parsing

Dynamic Programming Parsing

\square To avoid extensive repeated work you must cache intermediate results, specifically found constituents
\square Caching (memoizing) is critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs
\square Dynamic programming algorithms based on both top-down and bottom-up search can achieve $O\left(n^{3}\right)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods
CKY (Cocke-Kasami-Younger) algorithm based on
bottom-up parsing and requires first normalizing the
grammar.
\square Earley parser is based on top-down parsing and
does not require normalizing grammar but is more
complex.
\square These both fall under the general category of chart
parsers which retain completed constituents in a
chart

CKY parser: the chart

CKY parser: the chart

CKY parser: the chart

