
10/6/11	

1	

GRAMMARS
David Kauchak
CS457 – Spring 2011

some slides adapted from
Ray Mooney

Admin

¨  Assignment 2
¨  Assignment 3

¤ Technically due Sunday Oct. 16 at midnight
¤ Work in pairs
¤ Any programming language
¤ Given example output

Constituency

¨  Parts of speech can be thought of as the lowest level of
syntactic information

¨  Groups words together into categories

 likes to eat candy.

What can/can’t go here?

Constituency

 likes to eat candy.

He
She

The man
The boy
The cat

Dave
Professor Kauchak
Dr. Suess

nouns determiner nouns

pronouns
The man that I saw
The boy with the blue pants
The cat in the hat

determiner nouns +

10/6/11	

2	

Constituency

¨  Words in languages tend to form into functional
groups (parts of speech)

¨  Groups of words (aka phrases) can also be
grouped into functional groups
¤ often some relation to parts of speech
¤  though, more complex interactions

¨  These phrase groups are called constituents

Common constituents

He likes to eat candy.

The man in the hat ran to the park.

noun phrase verb phrase

noun phrase verb phrase

Common constituents

The man in the hat ran to the park.

noun phrase verb phrase

noun
phrase

prepositional
phrase

prepositional
phrase

Common constituents

The man in the hat ran to the park.

noun phrase

verb phrase

noun
phrase

prepositional
phrase

prepositional
phrase

noun
phrase

10/6/11	

3	

Syntactic structure

¨  Hierarchical: syntactic trees

The man in the hat ran to the park.

DT NN IN DT NN VBD IN DT NN

NP

NP

NP

PP

NP

PP

VP

S

parts of speech

terminals (words)

non-terminals

Syntactic structure

The man in the hat ran to the park.

DT NN IN DT NN VBD IN DT NN

NP

NP

NP

PP

NP

PP

VP

S

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park))))))

Syntactic structure

(S
 (NP
 (NP (DT the) (NN man))
 (PP (IN in)
 (NP (DT the) (NN hat))))
 (VP (VBD ran)
 (PP (TO to)
 (NP (DT the) (NN park))))))

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park))))))

Syntactic structure

¨  A number of related problems:
¤ Given a sentence, can we determine the syntactic

structure?
¤ Can we determine if a sentence is grammatical?
¤ Can we determine how likely a sentence is to be

grammatical? to be an English sentence?
¤ Can we generate candidate, grammatical sentences?

10/6/11	

4	

Grammars

What is a grammar (3rd grade again…)?

Grammars

¨  Grammar is a set of structural rules that govern
the composition of sentences, phrases and words

¨  Lots of different kinds of grammars:
¤  regular
¤ context-free
¤ context-sensitive
¤  recursively enumerable
¤  transformation grammars

States

What is the capitol of this state? Jefferson City (Missouri)

Context free grammar

¨  How many people have heard of them?
¨  Look like:

S → NP VP

left hand side
(single symbol)

right hand side
(one or more symbols)

10/6/11	

5	

Formally…

G = (NT, T, P, S)
¨  NT: finite set of nonterminal symbols
¨  T: finite set of terminal symbols, NT and T are

disjoint
¨  P: finite set of productions of the form

A → α, A ∈ V and α ∈ (T ∪ NT)*

¨  S ∈ NT: start symbol

CFG: Example

¨  Many possible CFGs for English, here is an
example (fragment):
¤  S → NP VP
¤ VP → V NP
¤ NP → DetP N | AdjP NP
¤ AdjP → Adj | Adv AdjP
¤ N → boy | girl
¤ V → sees | likes
¤ Adj → big | small
¤ Adv → very
¤ DetP → a | the

Grammar questions

¨  Can we determine if a sentence is grammatical?

¨  Given a sentence, can we determine the syntactic

structure?

¨  Can we determine how likely a sentence is to be
grammatical? to be an English sentence?

¨  Can we generate candidate, grammatical sentences?

Which of these can we answer with
a CFG? How?

Grammar questions

¨  Can we determine if a sentence is grammatical?
¤  Is it accepted/recognized by the grammar
¤  Applying rules right to left, do we get the start symbol?

¨  Given a sentence, can we determine the syntactic structure?
¤  Keep track of the rules applied…

¨  Can we determine how likely a sentence is to be
grammatical? to be an English sentence?
¤  Not yet… no notion of “likelihood” (probability)

¨  Can we generate candidate, grammatical sentences?
¤  Start from the start symbol, randomly pick rules that apply (i.e.

left hand side matches)

10/6/11	

6	

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

S

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

NP VP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

DetP N VP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy VP

10/6/11	

7	

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy likes NP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy likes a girl

Derivations in a CFG;
Order of Derivation Irrelevant

S → NP VP
VP → V NP
NP → DetP N | AdjP NP
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

DetP N VP

the boy VP DetP N likes NP

the boy likes a girl

Derivations of CFGs

¨  String rewriting system: we derive a string
¨  But derivation history represented by phrase-

structure tree

the boy likes a girl

boy the likes

DetP

NP

girl a

NP

DetP

S

VP

N

N

V

10/6/11	

8	

Parsing

¨  Parsing is the field of NLP interested in
automatically determining the syntactic structure
of a sentence

¨  parsing can be thought of as determining what
sentences are “valid” English sentences

¨  As a by product, we often can get the structure

Parsing

¨  Given a CFG and a sentence, determine the
possible parse tree(s)

S -> NP VP
NP -> N
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

What parse trees are possible for this sentence?

What if the grammar is much larger?

Parsing

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PP NP

VP

S
S -> NP VP
NP -> PRP
NP -> N PP
NP -> N
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

What is the difference between these parses?

Parsing ambiguity

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PP NP

VP

S
S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

How can we decide between these?

10/6/11	

9	

A Simple PCFG

S → NP VP 1.0

VP → V NP 0.7
VP → VP PP 0.3

PP → P NP 1.0

P → with 1.0

V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1
 NP → ears 0.18

 NP → saw 0.04

 NP → stars 0.18

 NP → telescope 0.1

Probabilities!

Just like n-gram language modeling, PCFGs break the
sentence generation process into smaller steps/probabilities

The probability of a parse is the product of the PCFG rules

= 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18
 * 1.0 * 1.0 * 0.18
= 0.0009072

= 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18
 * 1.0 * 1.0 * 0.18
= 0.0006804

Parsing problems

¨  Pick a model
¤ e.g. CFG, PCFG, …

¨  Train (or learn) a model
¤ What CFG/PCFG rules should I use?
¤ Parameters (e.g. PCFG probabilities)?
¤ What kind of data do we have?

¨  Parsing
¤ Determine the parse tree(s) given a sentence

10/6/11	

10	

PCFG: Training

¨  If we have example parsed sentences, how can we
learn a set of PCFGs?

.

.

.

Tree Bank

Supervised
PCFG
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

S

NP VP

John V NP PP

put the dog in the pen

S

NP VP

John V NP PP

put the dog in the pen

Extracting the rules

PRP

NP

V N IN

PP

NP

VP

S

I eat sushi with tuna

N

What CFG rules occur in this tree?

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
PP -> IN N
IN -> with
N -> tuna

Estimating PCFG Probabilities

¨  We can extract the rules from the trees

S → NP VP 1.0
VP → V NP 0.7

VP → VP PP 0.3

PP → P NP 1.0

P → with 1.0

V → saw 1.0

How do we go from the extracted CFG
rules to PCFG rules?

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
…

Estimating PCFG Probabilities

¨  Extract the rules from the trees
¨  Calculate the probabilities using MLE

P(!! " |!) = count(!! ")
count(!! #)

#

"
=
count(!! ")
count(!)

!! " p(!! " |!)

10/6/11	

11	

Estimating PCFG Probabilities

S -> NP VP 10
S -> V NP 3
S -> VP PP 2
NP -> N 7
NP -> N PP 3
NP -> DT N 6

P(S -> V NP) = ?

Occurrences

P(S -> V NP) = P(S -> V NP | S) =
count(S -> V NP)

count(S)

3

15
=

Grammar Equivalence

¨  Weak equivalence: grammars generate same set of
strings
¤ Grammar 1: NP → DetP N and DetP → a | the
¤ Grammar 2: NP → a N | NP → the N

¨  Strong equivalence: grammars have same set of
derivation trees
¤ With CFGs, possible only with useless rules
¤ Grammar 2: NP → a N | NP → the N
¤ Grammar 3: NP → a N | NP → the N, DetP → many

 Normal Forms

¨  There are weakly equivalent normal forms (Chomsky
Normal Form, Greibach Normal Form)

¨  A CFG is in Chomsky Normal Form (CNF) if all
productions are of one of two forms:
¤ A → BC with A, B, C nonterminals
¤ A → a, with A a nonterminal and a a terminal

¨  Every CFG has a weakly equivalent CFG in
CNF

CNF Grammar

S -> VP
VP -> VB NP
VP -> VB NP PP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

10/6/11	

12	

 Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
 0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me
 0.1 0.02 0.02 0.06
NP → Houston | NWA
 0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money
 0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
 0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Grammar questions

¨  Can we determine if a sentence is grammatical?

¨  Given a sentence, can we determine the syntactic

structure?

¨  Can we determine how likely a sentence is to be
grammatical? to be an English sentence?

¨  Can we generate candidate, grammatical sentences?

Parsing

¨  Parsing is the field of NLP interested in
automatically determining the syntactic structure
of a sentence

¨  parsing can also be thought of as determining
what sentences are “valid” English sentences

Parsing

¨  We have a grammar, determine the possible parse
tree(s)

¨  Let’s start with parsing with a CFG (no probabilities)

S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

approaches?
algorithms?

10/6/11	

13	

Parsing

¨  Top-down parsing
¤  ends up doing a lot of repeated work

¤  doesn’t take into account the words in the sentence until the end!

¨  Bottom-up parsing
¤  constrain based on the words

¤  avoids repeated work (dynamic programming)
¤  CKY parser

Parsing

¨  Top-down parsing
¤  start at the top (usually S) and apply rules
¤  matching left-hand sides and replacing with right-hand sides

¨  Bottom-up parsing
¤  start at the bottom (i.e. words) and build the parse tree up from there

¤  matching right-hand sides and replacing with left-hand sides

Parsing Example

S

 VP

Verb NP

book Det Nominal

that Noun

flight

book that flight

Top Down Parsing

S

NP VP

Pronoun

10/6/11	

14	

Top Down Parsing

S

NP VP

Pronoun

book

X

Top Down Parsing

S

NP VP

ProperNoun

Top Down Parsing

S

NP VP

ProperNoun

book

X

Top Down Parsing

S

NP VP

Det Nominal

10/6/11	

15	

Top Down Parsing

S

NP VP

Det Nominal

book

X

Top Down Parsing

S

Aux NP VP

Top Down Parsing

S

Aux NP VP

book

X

Top Down Parsing

S

 VP

10/6/11	

16	

Top Down Parsing

S

 VP

Verb

Top Down Parsing

S

 VP

Verb

book

Top Down Parsing

S

 VP

Verb

book
X

that

Top Down Parsing

S

 VP

Verb NP

10/6/11	

17	

Top Down Parsing

S

 VP

Verb NP

book

Top Down Parsing

S

 VP

Verb NP

book Pronoun

Top Down Parsing

S

 VP

Verb NP

book Pronoun

X
that

Top Down Parsing

S

 VP

Verb NP

book ProperNoun

10/6/11	

18	

Top Down Parsing

S

 VP

Verb NP

book ProperNoun

X
that

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that Noun

10/6/11	

19	

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that Noun

flight

Bottom Up Parsing

book that flight

Bottom Up Parsing

book that flight

Noun

Bottom Up Parsing

book that flight

Noun

Nominal

10/6/11	

20	

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

X

Bottom Up Parsing

book that flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

Nominal PP

Nominal

10/6/11	

21	

Bottom Up Parsing

book that flight

Noun Det

NP

Nominal

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal PP

Nominal

10/6/11	

22	

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

X

Bottom Up Parsing

book that

Verb Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

10/6/11	

23	

Det

Bottom Up Parsing

book that

Verb

VP

S

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

X
NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

10/6/11	

24	

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

S

Parsing

¨  Pros/Cons?
¤  Top-down:

n  Only examines parses that could be valid parses (i.e. with an S on
top)

n  Doesn’t take into account the actual words!

¤  Bottom-up:
n  Only examines structures that have the actual words as the leaves
n  Examines sub-parses that may not result in a valid parse!

10/6/11	

25	

Why is parsing hard?

¨  Actual grammars are large
¨  Lots of ambiguity!

¤ Most sentences have many parses
¤ Some sentences have a lot of parses
¤ Even for sentences that are not ambiguous, there is

often ambiguity for subtrees (i.e. multiple ways to parse
a phrase)

Why is parsing hard?

I saw the man on the hill with the telescope

What are some interpretations?

Structural Ambiguity Can Give Exponential Parses

 Me See A man The telescope The hill

“I was on the hill that has a telescope
when I saw a man.”

“I saw a man who was on the hill
that has a telescope on it.”

“I was on the hill when I used the
telescope to see a man.”

“I saw a man who was on a hill and
who had a telescope.”

“Using a telescope, I saw a man who
was on a hill.”

. . .

I saw the man on the hill with the telescope

Dynamic Programming Parsing

¨  To avoid extensive repeated work you must cache
intermediate results, specifically found constituents

¨  Caching (memoizing) is critical to obtaining a
polynomial time parsing (recognition) algorithm for
CFGs

¨  Dynamic programming algorithms based on both
top-down and bottom-up search can achieve O(n3)
recognition time where n is the length of the input
string.

10/6/11	

26	

Dynamic Programming Parsing Methods

¨  CKY (Cocke-Kasami-Younger) algorithm based on
bottom-up parsing and requires first normalizing the
grammar.

¨  Earley parser is based on top-down parsing and
does not require normalizing grammar but is more
complex.

¨  These both fall under the general category of chart
parsers which retain completed constituents in a
chart

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

what does this cell
represent?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

all constituents spanning
1-3 or “the man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

how could we figure this
out?

10/6/11	

27	

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Key: rules are binary and
only have two constituents
on the right hand side

VP -> VB NP
NP -> DT NN

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the” with any for
“man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the man” with any for
“with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

?

10/6/11	

28	

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the” with any for
“man with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man” with
any for “with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man with”
with any for “trust”

10/6/11	

29	

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What if our rules
weren’t binary?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man” with any for “with
trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What order should we fill
the entries in the chart?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What order should we
traverse the entries in the
chart?

10/6/11	

30	

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

From bottom to top, left to
right

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Top-left along the
diagonals moving to the
right

CKY parser: unary rules

¨  Often, we will leave unary rules
rather than converting to CNF

¨  Do these complicate the algorithm?
¤ Must check whenever we add a

constituent to see if any unary rules
apply

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

