
10/13/11	

1	

Hand video

¨  http://www.youtube.com/watch?v=-KxjVlaLBmk

ADVANCED PARSING
David Kauchak
CS457 – Spring 2011

some slides adapted from
Dan Klein

Admin

¨  Assignment 2 grades e-mailed

¨  Assignment 3?

¨  Survey
¤ Thanks for the feedback
¤ NLP within AI

Parsing evaluation

¨  You’ve constructed a parser
¨  You want to know how good it is
¨  Ideas?

10/13/11	

2	

Parsing evaluation

¨  Learn a model using the training set
¨  Parse the test set without looking at the “correct”

trees
¨  Compare our generated parse tree to the “correct”

tree

Treebank

Train Dev Test

Comparing trees

Correct Tree T Computed Tree P

Ideas?

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

N

S

Comparing trees

¨  Idea 1: see if the trees match exactly
¤ Problems?

n Will have a low number of matches (people often disagree)
n Doesn’t take into account getting it almost right

¨  Idea 2: compare the constituents

Comparing trees
Correct Tree T Computed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

How can we turn this into a score?
How many constituents match?

N

S

10/13/11	

3	

Evaluation measures

¨  Precision

¨  Recall

¨  F1

of correct constituents

of constituents in the computed tree

of correct constituents

of constituents in the correct tree

2 * Precision * Recall

Precision + Recall

Comparing trees
Correct Tree T Computed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

Constituents: 11 # Constituents: 10 # Correct Constituents: 9

Precision: Recall: F1: 9/11 9/10 0.857

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

N

S

Parsing evaluation

¨  Corpus: Penn Treebank, WSJ

¨  Parsing has been fairly standardized to allow for easy
comparison between systems

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Treebank PCFGs

§  Use PCFGs for broad coverage parsing
§  Can take a grammar right off the trees (doesn’t work well):

ROOT → S

S → NP VP .

NP → PRP

VP → VBD ADJP

…..

Model F1
Baseline 72.0

10/13/11	

4	

Generic PCFG Limitations

¨  PCFGs do not use any information about where the
current constituent is in the tree

¨  PCFGs do not rely on specific words or concepts, only
general structural disambiguation is possible (e.g.
prefer to attach PPs to Nominals)

¨  MLE estimates are not always the best

Conditional Independence?

§  Not every NP expansion can fill every NP slot
§  A grammar with symbols like “NP” won’t be context-free
§  Statistically, conditional independence too strong

Non-Independence

¨  Independence assumptions are often too strong

¨  Example: the expansion of an NP is highly dependent on the parent
of the NP (i.e., subjects vs. objects).

¨  Also: the subject and object expansions are correlated

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar Refinement

§  PCFG would treat these two NPs the same… but they’re not!
§  We can’t exchange them: “the noise heard she”
§  Idea: expand/refine our grammar
§  Challenges:

§  Must refine in ways that facilitate disambiguation
§  Must trade-offs between too little and too much refinement. Concerns?

§  Too much refinement -> sparsity problems

§  To little -> can’t discriminate (PCFG)

10/13/11	

5	

Grammar Refinement

Ideas?

Grammar Refinement

§  Structure Annotation [Johnson ’98, Klein&Manning ’03]
§  Differentiate constituents based on their local context

§  Lexicalization [Collins ’99, Charniak ’00]
§  Differentiate constituents based on the spanned words

§  Constituent splitting [Matsuzaki et al. 05, Petrov et al. ’06]
§  Cluster/group words into sub-constituents

Less independence

PRP

NP

V N IN

PP

NP

VP

S

I eat sushi with tuna

N

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
PP -> IN N
IN -> with
N -> tuna

We’re making a strong
independence assumption here!

Markovization

¨  Except for the root node, every node in a parse
tree has:
¤ A vertical history/context
¤ A horizontal history/context

NP

NP

VP

S

NP VBD

Traditional PCFGs use the full horizontal context and
a vertical context of 1

10/13/11	

6	

Vertical Markovization

¨  Vertical Markov order: rewrites depend on past k
ancestor nodes.

¨  Order 1 is most common: aka parent annotation

Order 1 Order 2

Allows us to make finer grained
distinctions

^S

^VP

Vertical Markovization

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000

15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

F1 performance # of non-terminals

Horizontal Markovization

Order 1 Order ∞

¨  Horizontal Markov order: rewrites depend on past k
ancestor nodes

¨  Order 1 is most common: condition on a single sibling

10/13/11	

7	

Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

F1 performance # of non-terminals

Problems with PCFGs

¨  What’s different between basic PCFG scores here?

Example of Importance of
Lexicalization

¨  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG

¨  But the desired preference can depend on specific
words

27

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP PP

put the dog in the pen

John put the dog in the pen.

28

Example of Importance of
Lexicalization

¨  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG

¨  But the desired preference can depend on specific
words

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP

put the dog in the pen X
John put the dog in the pen.

10/13/11	

8	

Lexicalized Trees

How could we lexicalize
the grammar/tree?

Lexicalized Trees

¨  Add “headwords” to
each phrasal node
¤  Syntactic vs. semantic

heads
¤  Headship not in (most)

treebanks
¤  Usually use head rules, e.g.:

n  NP:
n  Take leftmost NP
n  Take rightmost N*
n  Take rightmost JJ
n  Take right child

n  VP:
n  Take leftmost VB*
n  Take leftmost VP
n  Take left child

Lexicalized PCFGs?

¨  Problem: we now have to estimate probabilities like

¨  How would we estimate the probability of this rule?

¨  Never going to get these automically off of a treebank
¨  Ideas?

Count(VP(put) → VBD(put) NP(dog) PP(in))

Count(VP (put))

VP(put) → VBD(put) NP(dog) PP(in)

One approach

¨  Combine this with some of the markovization
techniques we saw

¨  Collins’ (1999) parser
¤ Models productions based on context to the left and the

right of the head daughter.

n  LHS → LnLn-1…L1H R1…Rm-1Rm

¤ First generate the head (H) and then repeatedly
generate left (Li) and right (Ri) context symbols until the
symbol STOP is generated.

10/13/11	

9	

Sample Production Generation

VPput → VBDput NPdog PPin
Note: Penn treebank tends to
have fairly flat parse trees that
produce long productions.

VPput → VBDput NPdog
H L1

STOP PPin STOP
R1 R2 R3

PL(STOP | VPput) * PH(VBD | Vpput)*
 PR(NPdog | VPput)*
 PR(PPin | VPput) * PR(STOP | PPin)

Count(PPin right of head in a VPput production)

Estimating Production Generation Parameters

¨  Estimate PH, PL, and PR parameters from treebank data

PR(PPin | VPput) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog right of head in a VPput production)
PR(NPdog | VPput) =

•  Smooth estimates by combining with simpler models
conditioned on just POS tag or no lexical info

smPR(PPin | VPput-) = λ1 PR(PPin | VPput)
 + (1- λ1) (λ2 PR(PPin | VPVBD) +
 (1- λ2) PR(PPin | VP))

Count(symbol right of head in a VPput)

Problems with lexicalization

¨  We’ve solved the estimation problem
¨  There’s also the issue of performance
¨  Lexicalization causes the size of the number of

grammar rules to explode!
¨  Our parsing algorithms take too long too finish

¨  Ideas?

Pruning during search

¨  We can no longer keep all possible parses around
¨  We can no longer guarantee that we actually return

the most likely parse
¨  Beam search [Collins 99]

¤  In each cell only keep the K most likely hypothesis
¤ Disregard constituents over certain spans (e.g.

punctuation)
¤ F1 of 88.6!

10/13/11	

10	

Pruning with a PCFG

¨  The Charniak parser prunes using a two-pass
approach [Charniak 97+]
¤  First, parse with the base grammar
¤  For each X:[i,j] calculate P(X|i,j,s)

n  This isn’t trivial, and there are clever speed ups

¤  Second, do the full CKY
n  Skip any X :[i,j] which had low (say, < 0.0001) posterior

¤ Avoids almost all work in the second phase!

¨  F1 of 89.7!

Tag splitting

¨  Lexicalization is an extreme case of splitting the
tags to allow for better discrimination

¨  Idea: what if rather than doing it for all words, we
just split some of the tags

Tag Splits

¨  Problem: Treebank tags
are too coarse
¤ We even saw this with the

variety of tagsets

¨  Example: Sentential, PP,
and other prepositions are
all marked IN

¨  Partial Solution:
¤  Subdivide the IN tag

Annotation F1 Size
Previous 78.3 8.0K
SPLIT-IN 80.3 8.1K

Other Tag Splits

¨  UNARY-DT: mark demonstratives as DT^U (“the X”
vs. “those”)

¨  UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

¨  TAG-PA: mark tags with non-canonical parents
(“not” is an RB^VP)

¨  SPLIT-AUX: mark auxiliary verbs with –AUX [cf.
Charniak 97]

¨  SPLIT-CC: separate “but” and “&” from other
conjunctions

¨  SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

10/13/11	

11	

Learning good splits:
Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Learned Splits

§  Proper Nouns (NNP):

§  Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

¨  Relative adverbs (RBR):

¨  Cardinal Numbers (CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned Splits

10/13/11	

12	

Final Results

F1
≤ 40 words

F1
all words Parser

Klein & Manning ’03 86.3 85.7

Matsuzaki et al. ’05 86.7 86.1

Collins ’99 88.6 88.2

Charniak & Johnson ’05 90.1 89.6

Petrov et. al. 06 90.2 89.7

Article discussion

¨  Smarter Marketing and the Weak Link In Its Success
¤  http://searchenginewatch.com/article/2077636/Smarter-Marketing-and-the-Weak-Link-In-Its-Success

¨  What are the ethics involved with tracking user interests for the purpose of
advertising? Is this something you find preferable to 'blind' marketing?

¨  Is possible to get an accurate picture of someone’s interests from their web
activity? What sources would be good for doing so?

¨  How do you feel about websites that change content depending on the
viewer? What are the implications of sites that behave this way?

