Hand video

http://www.youtube.com/watch?v=-KxjVlaLBmk

Admin

- Assignment 2 grades e-mailed
- Assignment 3?

Survey

Thanks for the feedbackNLP within Al

Parsing evaluation

- You've constructed a parser
- You want to know how good it is

🗆 Ideas?

Comparing trees

- Idea 1: see if the trees match exactly Problems?
 - Will have a low number of matches (people often disagree)Doesn't take into account getting it almost right
- □ Idea 2: compare the constituents

Lexicalized PCFGs?

- $\hfill \label{eq:problem:problem:problem:vence}$ Problem: we now have to estimate probabilities like $\mbox{VP(put)} \rightarrow \mbox{VBD(put)} \ \mbox{NP(dog)} \ \mbox{PP(in)}$
- How would we estimate the probability of this rule?

 $Count(VP(put) \rightarrow VBD(put) NP(dog) PP(in))$

Count(VP (put))

Never going to get these automically off of a treebank
 Ideas?

One approach

- Combine this with some of the markovization techniques we saw
- Collins' (1999) parser
 Models productions based on context to the left and the right of the head daughter.

• LHS \rightarrow L_nL_{n-1}...L₁H R₁...R_{m-1}R_m

First generate the head (H) and then repeatedly generate left (L_i) and right (R_i) context symbols until the symbol STOP is generated.

Problems with lexicalization

- We've solved the estimation problem
- There's also the issue of performance
- Lexicalization causes the size of the number of grammar rules to explode!
- Our parsing algorithms take too long too finish
- Ideas?

Pruning during search

- □ We can no longer keep all possible parses around
- We can no longer guarantee that we actually return the most likely parse
- □ Beam search [Collins 99]
 - In each cell only keep the K most likely hypothesis
 - Disregard constituents over certain spans (e.g.
 - punctuation)
 - F1 of 88.6!

Pruning with a PCFG

The Charniak parser prunes using a two-pass approach [Charniak 97+]

- First, parse with the base grammar
 For each X:[i,i] calculate P(X | i,j,s)
 - This isn't trivial, and there are clever speed ups
- Second, do the full CKY
- Skip any X :[i,j] which had low (say, < 0.0001) posterior
 Avoids almost all work in the second phase!

□ F1 of 89.7!

Tag splitting

- Lexicalization is an extreme case of splitting the tags to allow for better discrimination
- Idea: what if rather than doing it for all words, we just split some of the tags

Other Tag Splits		
	F1	Size
 UNARY-DT: mark demonstratives as DT^AU ("the X" vs. "those") 	80.4	8.1K
 UNARY-RB: mark phrasal adverbs as RB^AU ("quickly" vs. "very") 	80.5	8.1K
 TAG-PA: mark tags with non-canonical parents ("not" is an RB^AVP) 	81.2	8.5K
 SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97] 	81.6	9.0K
 SPLIT-CC: separate "but" and "&" from other conjunctions 	81.7	9.1K
SPLIT-%: "%" gets its own tag.	81.8	9.3K

	Learned Splits						
■ Pro	oper Nouns (I	NNP):					
	NNP-14	Oct.	Nov.	Sept.			
	NNP-12	John	Robert	James			
	NNP-2	J.	E.	L.			
	NNP-1	Bush	Noriega	Peters			
	NNP-15	New	San	Wall			
	NNP-3	York	Francisco	Street			
 Per 	rsonal prono	uns (PRP):					
	PRP-0	lt	He				
	PRP-1	it	he	they			
	PRP-2	it	them	him			

	Learned Splits								
🗆 Rel	Relative adverbs (RBR):								
	RBR-0	further	lower	higher					
	RBR-1	more	less	More					
	RBR-2	earlier	Earlier	later					
🗖 Ca	rdinal Numb	ers (CD):							
	CD-7	one	two	Three					
	CD-4	1989	1990	1988					
	CD-11	million	billion	trillion					
	CD-0	1	50	100					
	CD-3	1	30	31					
		70	50	24					

Final Results				
Parser	F1 ≤ 40 words	F1 all words		
Klein & Manning '03	86.3	85.7		
Matsuzaki et al. ' 05	86.7	86.1		
Collins ' 99	88.6	88.2		
Charniak & Johnson ' 05	90.1	89.6		
Petrov et. al. 06	90.2	89.7		

