
CS161 - Minimum Spanning Trees

and Single Source Shortest Paths

David Kauchak

Single Source Shortest Paths

• Given a graph G and two vertices s, t what is the shortest path from
s to t?

For an unweighted graph, BFS gives us a solution to this problem.

For weighted graphs, as it turns out, we can calculate the shortest
distance from s to all vertices t ∈ V in worst case the same amount of
time for any particular t, so we’ll look at this problem, which is the
single source shortest paths.

• Shortest path property

If the path v1, v2, v3, ..., vk where vi ∈ V is the shortest path from v1

to vk then for all 1 ≤ i ≤ j ≤ k, vi, vi+1, ..., vj is the shortest path
from vi to vj

Proof: Consider that a shorter path exists between vi and vj , then
we could use this path instead of the path vi, vi+1, ..., vj in the path
from v1 to vk, resulting in a shorter path from v1 to vk, but this is a
contradiction.

• General idea for all the algorithms

mark each vertex with an upper bound on the distance from the source
to that node. Decrease that value until it is correct.

• Dijkstra’s algorithm

Assume that all of the weights are positive

1

Like BFS, exept our frontier that we expand is based on the weights
of the edges not the number of edges

Dijkstra(G, s)

1 for all v ∈ V
2 dist[v]←∞
3 prev[v]← null
4 dist[s]← 0
5 Q←MakeHeap(V)
6 while !Empty(Q)
7 u← ExtractMin(Q)
8 for all edges (u, v) ∈ E
9 if dist[v] > dist[u] + w(u, v)

10 dist[v]← dist[u] + w(u, v)
11 DecreaseKey(Q, v, dist[v])
12 prev[v]← u

Example

Why doesn’t this hold with negative weights?

Consider the graph:

A→ B : 1, C : 10
B → D : 1
C → D : −10
D → E : 5

What is the shortest path from A to E?

– Is it correct?

Invariant: For every vertex that has been visited/removed from
the heap, dist[v] is the actual shortest distance from s to v

The only time a vertex u gets visited is when the distance from s
to that vertex is smaller than any remaining vertex. In addition,
because we enforce positive weights, there cannot be any other

2

path to u that hasn’t been visited already that would result in a
shorter path, since all paths visited in the future are longer.

– Runtime

Depends on the heap implementation

1 call to MakeHeap

|V | calls to ExtractMax

|E| calls to DecreaseKey

1. array
V + V ∗ V + E = O(V 2)

2. binary heap
V + V log V + E log V = O((V + E) log V) = O(E log V)

if E < V 2/ log V then this is an improvement

3. fibonacci heap
V + V log V + E = O(V log V + E)

• negative cycles

positive cycles - if a positive cycle exists can a path through that cycle
be the shortest path?

negative cycles - What happens when a negative cycles exists along
the path to a negative cycle?

• Bellman-Ford algorithm (general case)

3

Bellman-Ford(G, s)

1 for all v ∈ V
2 dist[v]←∞
3 prev[v]← null
4 dist[s]← 0
5 for i← 1 to |V | − 1
6 for all edges (u, v) ∈ E
7 if dist[v] > dist[u] + w(u, v)
8 dist[v]← dist[u] + w(u, v)
9 prev[v]← u

10 for all edges (u, v) ∈ E
11 if dist[v] > dist[u] + w(u, v)
12 return false

Example

– Is it correct?

Assuming no negative cycles (along the paths from s),

Invariant: After any iteration i, all i edge paths from the source
s to any vertex are the shortest possible path of i edges or less.

For i = 1 this is true, since we’re only traversing one edge, so
the distance for any vertex v, 1 edge away from s will be w(s, v),
which is the shortest path.

Consider the difference between paths of length i − 1 and paths
of length i. There are two options:

∗ Adding another edge decreases the length of a particular path
In this case, the comparison at line 6 will notice this difference
(since it iterates over all edges) and the new distance for v
will be updated accordingly

∗ Adding another edge doesn’t decrease the length of a partic-
ular path In this case, the comparison at line 6 will not be
true and no changes will be made, so the invariant still holds

Does it identify negative cycles?

The check in lines 9-11, see if we can continue to decrease the
shortest path to a node. The only time this can happen, is if

4

there is a negative cycle exists since all paths of length V − 1
should already have the correct values. Any path longer than
this must contain a cycle. A positive cycle would not decrease
the value, so it must be a negative cycle.

– Running time

V − 1 loops and each loop iterates over all edges, O(V E)

Is there any way we can speed this up slightly? What happens if
at a given iteration we don’t update any distances?

• Dags

Adds the constraint that there are no cycles

Minimum Spanning Trees

• what is the problem?

What is the lowest weight set of edges that connects all vertices of an
undirected graph with positive weights?

Can there be cycles?

Example

• what are the applications

– Network connectivity

– Wiring connectivity

• Cut property

What is a cut?

Let S be a subset of the vertices and let edge e = (u, v) be the mini-
mum cost edge with u ∈ S and v ∈ V − S. Every minimum spanning
tree contains the edge e.

Proof: Consider a minimum spanning tree T that does not contain
e. There must be come cycle in the graph that contains an edge

5

e′ = (u′, v′) with u′ ∈ S and v′ ∈ V − S with a higher weight (other-
wise e would be the only option for creating an spanning tree).

If we remove e′ from the spanning tree and include e, we will still have
a spanning tree since we still connect sets S and V −S. However, this
new tree will have a lower weight since the weight of e is less than the
weight of e′, so T is not a minimum spanning tree.

We’ll use this property to prove the correctness of the MST algorithms.

• Kruskal’s algorithm

Add the lowest weight edge to the tree as long as that edge does not
connect two vertices that are already connected via some other path.

Kruskal(G)

1 for all v ∈ V
2 MakeSet(v)
3 T ← {}
4 sort the edges of E by weight
5 for all edges (u, v) ∈ E in increasing order of weight
6 if Find-Set(u) 6= Find-Set(v)
7 add edge to T
8 Union(Find-Set(u),Find-Set(v))

Example

1. Is it correct?

Let S be the set Find-Set(u). The edge (u, v) is the minimum
edge from S to V − S since we’re visiting edge in increasing
order and if S were connected to S − V then Find-Set(u) 6=
Find-Set(v) would not be true. Therefore, by the cut propery,
e must be part of the MST.

2. Running time

V calls to MakeSet

Sort the edges: O(E log E)

6

2E calls to Find-Set

V − 1 calls to Union

Depends on the implementation of the sets

– Linked lists
V + E log E + E ∗ V + V = O(E ∗ V)

– Linked lists + heuristics (see section 21.3 of [1])

V + E log E + E log V + V = O(E log E + V log V)

= O(E log V + V log V)

= O((E + V) log V

= O(E log V)

• Prim’s algorithm

Start at some root node and build out the MST by adding the lowest
weighted edge at the frontier.

Prim(G, r)

1 for all v ∈ V
2 key[v]←∞
3 prev[v]← null
4 key[r]← 0
5 H ←MakeHeap(key)
6 while !Empty(H)
7 u← Extract-Min(H)
8 visited[u]← true
9 for each edge (u, v) ∈ E

10 if !visited[v] and w(u, v) < key(v)
11 Decrease-Key(v,w(u, v))
12 prev[v]← u

Example

– Is it correct?

Let S be the set of vertices visited so far (i.e. v : visited[v] =
true). The only time a new edge is added to the MST is when it

7

is the lowest weight edge from S to V −S because we use a heap
and we only add edges from nodes in S. Therefore, by the cut
property, this added edge is part of the MST.

– Runtime

V initialization operation of Θ(1)

1 call to MakeHeap

V calls to Extract-Min

E calls to Decrease-Key

1. Binary heap
V + E + V log V + E log V = O((V + E) log V) = O(E log V)

2. Fibonacci heap
V + E + V log V + E = O(V log V)

These notes are adapted from material found in chapters 22,23 of [1], chap-
ter 4 of [2] and chapters 4,5 of [3]

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.
[2] Jon Kleinberg and Eva Tardos. 2006. Algorithm Design. Pearson Edu-
cation, Inc.
[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008.
Algorithms. McGraw-Hill Companies, Inc.

8

