CS161 - Minimum Spanning Trees and Single Source Shortest Paths

David Kauchak

Single Source Shortest Paths

- Given a graph G and two vertices s, t what is the shortest path from s to t ?
For an unweighted graph, BFS gives us a solution to this problem.

For weighted graphs, as it turns out, we can calculate the shortest distance from s to all vertices $t \in V$ in worst case the same amount of time for any particular t, so we'll look at this problem, which is the single source shortest paths.

- Shortest path property

If the path $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ where $v_{i} \in V$ is the shortest path from v_{1} to v_{k} then for all $1 \leq i \leq j \leq k, v_{i}, v_{i+1}, \ldots, v_{j}$ is the shortest path from v_{i} to v_{j}

Proof: Consider that a shorter path exists between v_{i} and v_{j}, then we could use this path instead of the path $v_{i}, v_{i+1}, \ldots, v_{j}$ in the path from v_{1} to v_{k}, resulting in a shorter path from v_{1} to v_{k}, but this is a contradiction.

- General idea for all the algorithms
mark each vertex with an upper bound on the distance from the source to that node. Decrease that value until it is correct.
- Dijkstra's algorithm

Assume that all of the weights are positive

Like BFS, exept our frontier that we expand is based on the weights of the edges not the number of edges

```
Dijkstra \((G, s)\)
    for all \(v \in V\)
        \(\operatorname{dist}[v] \leftarrow \infty\)
        \(\operatorname{prev}[v] \leftarrow\) null
    \(\operatorname{dist}[s] \leftarrow 0\)
    \(Q \leftarrow \operatorname{MakeHeap}(V)\)
    while ! Емpty \((Q)\)
        \(u \leftarrow \operatorname{ExtractMin}(Q)\)
        for all edges \((u, v) \in E\)
            if \(\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)\)
                        \(\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)\)
                        \(\operatorname{DecreaseKey}(Q, v, \operatorname{dist}[v])\)
            \(\operatorname{prev}[v] \leftarrow u\)
```

Example
Why doesn't this hold with negative weights?

Consider the graph:
$A \rightarrow B: 1, C: 10$
$B \rightarrow D: 1$
$C \rightarrow D:-10$
$D \rightarrow E: 5$

What is the shortest path from A to E ?

- Is it correct?

Invariant: For every vertex that has been visited/removed from the heap, dist $[v]$ is the actual shortest distance from s to v

The only time a vertex u gets visited is when the distance from s to that vertex is smaller than any remaining vertex. In addition, because we enforce positive weights, there cannot be any other
path to u that hasn't been visited already that would result in a shorter path, since all paths visited in the future are longer.

- Runtime

Depends on the heap implementation

1 call to MakeHEap
$|V|$ calls to ExtractMax
$|E|$ calls to DecreaseKey

1. array
$V+V * V+E=O\left(V^{2}\right)$
2. binary heap

$$
V+V \log V+E \log V=O((V+E) \log V)=O(E \log V)
$$

if $E<V^{2} / \log V$ then this is an improvement
3. fibonacci heap
$V+V \log V+E=O(V \log V+E)$

- negative cycles
positive cycles - if a positive cycle exists can a path through that cycle be the shortest path?
negative cycles - What happens when a negative cycles exists along the path to a negative cycle?
- Bellman-Ford algorithm (general case)

```
\(\operatorname{Bellman-Ford}(G, s)\)
    for all \(v \in V\)
    \(\operatorname{dist}[v] \leftarrow \infty\)
    \(\operatorname{prev}[v] \leftarrow\) null
\(\operatorname{dist}[s] \leftarrow 0\)
for \(i \leftarrow 1\) to \(|V|-1\)
    for all edges \((u, v) \in E\)
        if \(\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)\)
                                    \(\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)\)
                                    \(\operatorname{prev}[v] \leftarrow u\)
for all edges \((u, v) \in E\)
    if \(\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)\)
        return false
```

Example

- Is it correct?

Assuming no negative cycles (along the paths from s),

Invariant: After any iteration i, all i edge paths from the source s to any vertex are the shortest possible path of i edges or less.

For $i=1$ this is true, since we're only traversing one edge, so the distance for any vertex $v, 1$ edge away from s will be $w(s, v)$, which is the shortest path.

Consider the difference between paths of length $i-1$ and paths of length i. There are two options:

* Adding another edge decreases the length of a particular path In this case, the comparison at line 6 will notice this difference (since it iterates over all edges) and the new distance for v will be updated accordingly
* Adding another edge doesn't decrease the length of a particular path In this case, the comparison at line 6 will not be true and no changes will be made, so the invariant still holds
Does it identify negative cycles?

The check in lines $9-11$, see if we can continue to decrease the shortest path to a node. The only time this can happen, is if
there is a negative cycle exists since all paths of length $V-1$ should already have the correct values. Any path longer than this must contain a cycle. A positive cycle would not decrease the value, so it must be a negative cycle.

- Running time $V-1$ loops and each loop iterates over all edges, $O(V E)$

Is there any way we can speed this up slightly? What happens if at a given iteration we don't update any distances?

- Dags

Adds the constraint that there are no cycles

Minimum Spanning Trees

- what is the problem?

What is the lowest weight set of edges that connects all vertices of an undirected graph with positive weights?

Can there be cycles?

Example

- what are the applications
- Network connectivity
- Wiring connectivity
- Cut property

What is a cut?

Let S be a subset of the vertices and let edge $e=(u, v)$ be the minimum cost edge with $u \in S$ and $v \in V-S$. Every minimum spanning tree contains the edge e.

Proof: Consider a minimum spanning tree T that does not contain e. There must be come cycle in the graph that contains an edge
$e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ with $u^{\prime} \in S$ and $v^{\prime} \in V-S$ with a higher weight (otherwise e would be the only option for creating an spanning tree).

If we remove e^{\prime} from the spanning tree and include e, we will still have a spanning tree since we still connect sets S and $V-S$. However, this new tree will have a lower weight since the weight of e is less than the weight of e^{\prime}, so T is not a minimum spanning tree.

We'll use this property to prove the correctness of the MST algorithms.

- Kruskal's algorithm

Add the lowest weight edge to the tree as long as that edge does not connect two vertices that are already connected via some other path.
$\operatorname{Kruskal}(G)$

```
for all \(v \in V\)
    \(\operatorname{MakeSet}(v)\)
\(T \leftarrow\}\)
sort the edges of \(E\) by weight
for all edges \((u, v) \in E\) in increasing order of weight
    if \(\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find-Set}(v)\)
            add edge to \(T\)
            Union(Find-Set( \(u\) ), Find-Set \((v)\) )
```


Example

1. Is it correct?

Let S be the set $\operatorname{Find}-\operatorname{Set}(u)$. The edge (u, v) is the minimum edge from S to $V-S$ since we're visiting edge in increasing order and if S were connected to $S-V$ then $\operatorname{Find-Set}(u) \neq$ Find-Set (v) would not be true. Therefore, by the cut propery, e must be part of the MST.
2. Running time
V calls to MakeSet

Sort the edges: $O(E \log E)$

```
2E calls to Find-Set
```

$V-1$ calls to Union
Depends on the implementation of the sets

- Linked lists
$V+E \log E+E * V+V=O(E * V)$
- Linked lists + heuristics (see section 21.3 of [1])

$$
\begin{aligned}
V+E \log E+E \log V+V & =O(E \log E+V \log V) \\
& =O(E \log V+V \log V) \\
& =O((E+V) \log V \\
& =O(E \log V)
\end{aligned}
$$

- Prim's algorithm

Start at some root node and build out the MST by adding the lowest weighted edge at the frontier.

```
\(\operatorname{Prim}(G, r)\)
    for all \(v \in V\)
    \(k e y[v] \leftarrow \infty\)
    \(\operatorname{prev}[v] \leftarrow\) null
\(k e y[r] \leftarrow 0\)
\(H \leftarrow \operatorname{MakeHeap}(k e y)\)
while !Empty \((H)\)
            \(u \leftarrow \operatorname{Extract-Min}(H)\)
            visited \([u] \leftarrow\) true
            for each edge \((u, v) \in E\)
                if !visited \([v]\) and \(w(u, v)<k e y(v)\)
                    Decrease-Key \((v, w(u, v))\)
                            \(\operatorname{prev}[v] \leftarrow u\)
```


Example

- Is it correct?

Let S be the set of vertices visited so far (i.e. $v: \operatorname{visited}[v]=$ true). The only time a new edge is added to the MST is when it
is the lowest weight edge from S to $V-S$ because we use a heap and we only add edges from nodes in S. Therefore, by the cut property, this added edge is part of the MST.

- Runtime
V initialization operation of $\Theta(1)$
1 call to MakeHeap
V calls to Extract-Min
E calls to Decrease-Key

1. Binary heap

$$
V+E+V \log V+E \log V=O((V+E) \log V)=O(E \log V)
$$

2. Fibonacci heap

$$
V+E+V \log V+E=O(V \log V)
$$

These notes are adapted from material found in chapters 22,23 of [1], chapter 4 of [2] and chapters 4,5 of [3]

References
[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.
[2] Jon Kleinberg and Eva Tardos. 2006. Algorithm Design. Pearson Education, Inc.
[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008. Algorithms. McGraw-Hill Companies, Inc.

