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• Types of graphs

What is a graph? A graph is a set of vertices V and a set of edges
(u, v) ∈ E where u, v ∈ V

– undirected

– directed

– weighted

Some special cases

– tree - connected, undirected graph without any cycles

– DAG (directed acyclic graph) - directed graph without any cycles

– complete graph - a graph where every vertex is connected

– bipartite graph - a graph where every vertex can be partitioned
into two sets X and Y such that all edges connect a vertex u ∈ X

and a vertex v ∈ Y

• Examples

– Transportation networks (flights, roads, etc.)

– Communication networks

– Web

– Bayesian networks

– Social networks

– Circuit design

• Representation
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– Adjacency list

Each vertex u ∈ V contains an adjacency list of the set of vertices
v such that there exists an edge (u, v) ∈ E

Example of undirected and directed

– Adjacency matrix

A graph is represented by a |V | x |V | matrix A such that

aij =

{

1 if (i, j) ∈ E

0 otherwise

Example of undirected and directed

– Tradeoffs

Dense vs. sparse graph

Adjacency list: Space efficient, e.g. web

Adjacency matrix: constant time lookup to see if an edge exists

Best of both worlds?

– Weighted graphs

Adjacency list: store the weight in the adjacency list

Adjacency matrix:

aij =

{

weight if (i, j) ∈ E

0 otherwise

• Graph algorithms

– graph traversal (BFS, DFS)

– Shortest path from a to b

∗ unwieghted

∗ weighted positive weights

∗ negative/positive weights

– All pair shortest paths

– Are all nodes in the graph connected?
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– Is the graph a bipartite graph?

– ...

• Breadth first search (BFS) on trees

TreeBFS(T )

1 Enqueue(Q,Root(T ))
2 while !Empty(Q)
3 v ← Dequeue(Q)
4 Visit(v)
5 for all c ∈ Children(v)
6 Enqueue(Q, c)

What order does the algorithm traverse the nodes?

Does it visit all of the nodes?

Frontier - The frontier of the algorithm is the set of vertices that have
been visited

Runtime - Visits each node and edge exactly once - O(|V |+ |E|)

• Depth first search (DFS) on trees

TreeDFS(T )

1 Push(S,Root(T ))
2 while !Empty(S)
3 v ← Pop(S)
4 Visit(v)
5 for all c ∈ Children(v)
6 Push(S, c)

What order does the algorithm traverse nodes?

Frontier?

Runtime
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• BFS on graphs

Visits all nodes reachable from s and records the shortest distance
from s to each other node

What happens when we generalize to graphs?

Maze analogy

BFS(G, s)

1 for each v ∈ V

2 dist[v] =∞
3 dist[s] = 0
4 Enqueue(Q, s)
5 while !Empty(Q)
6 u← Dequeue(Q)
7 Visit(u)
8 for each edge (u, v) ∈ E

9 if dist[v] =∞
10 Enqueue(Q, v)
11 dist[v]← dist[u] + 1

– Is it correct? Does BFS visit all nodes reachable from node s?

Conside some u that the algorithm “misses”. Choose any path
from s to u and look at the last vertex on that path that the
procedure actually visited. Call this node z, and let w be the
node immediately after it on the same path. z would be visited
and w was not, which is a contradiction given the pseudocode
above.

– Runtime

The algorithm visits each node at most once and each edge is
examined twice, once from u and once from v, O(|V |+ |E|)

What about directed graphs?

What if the graph were stored as an adjacency matrix?

BFS generates a tree from the start node s, called the BFS-Tree.
What properties does this tree have?
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– If a path exists from s to v (i.e. v is reachable from s), then v

will be in the BFS-Tree

– The path in the BFS-Tree from any two nodes, u, v (including
the root) is the shortest path between those two nodes.

Think about how BFS expands the frontier

Suppose it was not the shortest. Then there would exist some
other node w, such that distance(u,w)+distance(w, v) < distance(u, v),
where the path from u to v does not include w. However, given
that BFS expands the frontier one step at a time.

• DFS on graphs

DFS-Visit(u)

1 visited[u]← true

2 PreVisit(u)
3 for all edges (u, v) ∈ E

4 if !visited[v]
5 DFS-Visit(v)
6 PostVisit(u)

DFS(G)

1 for all v ∈ V

2 visited[v] ← false

3 for all v ∈ V

4 if !visited[v]
5 DFS-Visit(v)

The output from DFS is a depth-first forest

Why do we try and visit all nodes using DFS and not BFS? We could
do a similar procedure for BFS, however, BFS is generally used to find
shortest paths, while DFS is generally used to look at connectedness.

– Is it correct? Does it explore all nodes?

– Runtime

Similar to BFS each vertex is visted once and each edge visited
twice, O(|V |+ |E|)
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• Topological sort of a DAG

– A topological sort indicates precedence, e.g. classes.

– Why not topological sort of any directed graph?

– If G is a DAG, then it has a topological ordering. Why?

Topological-Sort1(G)

1 Find a node v with no incoming edges
2 Delete v from G

3 Add v to linked list
4 Topological-Sort1(G)

∗ Is it correct? Root of a DAG contains DAGs as children

∗ Runtime
1 - O(|V |+ |E|)
2 - O(|E|) overall
4 - Call |V | times - O(|V |2 + |V ||E|)

Topological-Sort2(G)

1 for all edges (u, v) ∈ E

2 active[v]← active[v] + 1
3 for all v ∈ V

4 if active[v] = 0
5 Enqueue(S, v)
6 while !Empty(S)
7 u← Dequeue(S)
8 add u to linked list
9 for each edge (u, v) ∈ E

10 active[v]← active[v] − 1
11 if active[v] = 0
12 Enqueue(S, v)

∗ Is it correct?

∗ Running time?

Example

Runtime
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• Does a cycle exist in a directed graph, i.e. is it a DAG?

What is a cycle? A cycle is a path in the tree v0, v1, v2, ..., vn, v0 where
the beginning and ending vertex are the same.

Be careful, there are things that look like cycles, but are not.

Call Topological-Sort. If the number of nodes in linked list is the
number of vertices, then yes, otherwise, no.

• Is an undirected graph connected? Discovering connected components
in an undirected graph.

Given a node u ∈ V can we reach all other nodes in the graph?

Run DFS or BFS and keep track of the visited nodes. If we visit all
of the nodes, then yes, otherwise no.

• Is the graph strongly connected?

A strongly connected graph is a directed graph where any node u ∈ V

is reachable from any other node v.

Strongly-Connected(G)

1 Run DFS or BFS from some node u

2 if not all nodes are visited
3 return false
4 Create graph GR by reversing all edge dirctions
5 Run DFS or BFS on GR from node u

6 if not all nodes are visited
7 return false
8 return true

• Is the graph a bipartite graph?

What makes a graph bipartite?

Is a triangle a bipartite graph? Why not?
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Can we divide the graph into two colors? Pick a node and color it
red. If the graph is bipartite, what must we know about all of it’s
neighbors? What about the neighbors of those nodes?

Bipartite(G)

1 Run BFS
2 for all v ∈ V

3 if dist[v] mod 2 = 0
4 color[v] = red

5 else

6 color[v] = blue

7 for all (u, v) ∈ E

8 if color[u] = color[v]
9 return false

10 return true

• Does a sink exist in a directed graph?

• Isomorphism

These notes are adapted from material found in chapter 22 of [1], chapter 3
of [2] and chapters 3,4 of [3].
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