CS161 - Search Trees

David Kauchak

- Binary Search - Given a sorted list of values A, find a particular value. Similar to looking something up in a dictionary or phone book: $O(\log n)$
- Binary search tree (BST) - A binary search tree is a binary tree where a parents value is greater than all children to the left and less than or equal to all children to the right. Specifically, given a node x in a BST:

$$
\operatorname{LEFT}(x)<x \leq \operatorname{RIGHT}(x)
$$

As with other tree structures, can be implemented with pointers or with an array

Look at example(s)

- Given the definition, what else can we say?
* All elements to the left of a node are less than the node
* All elements to the right of a node are greater than or equal to the node
* The smallest element is the left-most node
* The largest element is the right-most node
- Why not the setup below?:

$$
\operatorname{LEFt}(x) \leq x \leq \operatorname{RIGHt}(x)
$$

- Which of the set operations is this data structure good/bad for?
* $\operatorname{Search}(S, k)$ - good
* $\operatorname{Insert}(S, k)$ - average
* $\operatorname{Delete}(S, x)$ - average
* $\operatorname{Minimum}(S)$ - good
* Maximum (S) - good
- Enumerating the elements in order:

InorderTreeWalk (x)

```
if}x\not=\mathrm{ null
    InorderTreeWalk(Left(x))
    print x
    InorderTreeWalk(Right(x))
```

* Is it correct?

Definition of $\operatorname{BST}: \operatorname{LEFt}(x)<x \leq \operatorname{RIGht}(x)$ and proof by induction.

* Runtime?

Given a node with k nodes in the left subtree and $n-k-1$ nodes in the right subtree, the recurrence is:

$$
T(n)=T(k)+T(n-k-1)+c
$$

we can solve this, or, answer the following two questions:

1. How much work is done for each call to InorderTreeWalk?
2. How many calls are made to InorderTreeWalk?

* What needs to be changed to traverse in reverse order?
* Pre-order and post-order traversals?
- Searching for a particular value:
$\operatorname{BSTSEARCH}(x, k)$

```
if \(x=\) null or \(k=x\)
    return x
elseif \(k<x\)
    return BSTSEARCH(LEFT(x), k)
    else
    return \(\operatorname{BSTSEARCh}(\operatorname{Right}(\mathrm{x}), \mathrm{k})\)
```

```
ItERativeBSTSEARCh( }x,k\mathrm{ )
    while }x\not=\mathrm{ null and }k\not=
        if }k<
            x\leftarrow\operatorname{LeFT}(x)
        else
            x\leftarrowRIGHt(x)
    return }
```

1. Is it correct?
2. Runtime? What is the worst case? The node we're looking for is a leaf and it is the deepest leaf - $O(h)$

- Finding the min/max

BSTMin (x)

```
    if LEFT}(x)=nul
    return }
    else
    return BSTMin(LEFT}(x)
IterativeBSTMin}(x
    while LEFT ( }x)\not=\mathrm{ null
    x\leftarrow\operatorname{LeFT}(x)
return }
```

* Is it correct?
$\operatorname{Left}(x)<x \leq \operatorname{Right}(x)$, therefore the smallest element is the leftmost element.
* Runtime? We always visit a leave of the tree. Worst case, this leave is the lowest leave - $O(h)$
* What needs to be changed to find the max?
- Successor and predecessor
* A simple look:
- Predecessor is the right-most node of the left sub-tree, i.e. the largest node of all of the elements that are less than a node.
- Successor is the left-most node of the right sub-tree, i.e. the smallest node of all of the elements that are larger than a node.
* What if a node does not have a left or right subtree?

Let's examine successor. If a node x doesn't have a right sub-tree, then either the element is the largest element and doesn't have a successor or it's successor, call it y, is the element in the tree to which x is the predecessor. So, we want to find the node y such that x is the right-most node of the left sub-tree of y. Another way of saying it, we want to find the lowest ancestor of x whose left child is also an ancestor of x.
$\operatorname{SuCCESSOR}(x)$

```
if \(\operatorname{Right}(x) \neq\) null
    return \(\operatorname{BSTMin}(\operatorname{Right}(x))\)
    else
        \(y \leftarrow \operatorname{Parent}(x)\)
        while \(y \neq\) null and \(x=\operatorname{Right}(y)\)
            \(x \leftarrow y\)
            \(y \leftarrow \operatorname{Parent}(y)\)
return \(y\)
```

- Is it correct?
- Runtime? Worst case, we have to traverse the tree from one of the leaves to the root. $O(h)$
- Insertion into a BST

```
BSTInsert \((T, x)\)
    if \(\operatorname{Root}(T)=\) null
        \(\operatorname{Root}(T) \leftarrow x\)
    else
        \(y \leftarrow \operatorname{Root}(T)\)
        while \(y \neq\) null
                prev \(\leftarrow y\)
                if \(x<y\)
            \(y \leftarrow \operatorname{LEFT}(y)\)
            else
                \(y \leftarrow \operatorname{Right}(y)\)
        \(\operatorname{Parent}(x) \leftarrow\) prev
        if \(x<\) prev
            \(\operatorname{Left}(p r e v) \leftarrow x\)
        else
        \(\operatorname{Right}(\) prev \() \leftarrow x\)
```

* Is it correct? Assuming no duplicates in the tree, finds the appropriate parent and inserts the value. Lines 6-8 make sure that the BST property is maintained.

What happens if there is a duplicate?

* Runtime? $O(h)$
- Deleting a node: 3 cases

1. If x has no children, remove x
2. If x has only one child, splice out x
3. If x has two children, replace x with its successor in the list. Will it always have a successor?

* Is it correct?
* Runtime? $O(h)$ for the call to find the successor.
- Examples
- Most of the algorithms run in time bounded by the height of the tree.
* What is the worst case height? When does this happen?
* What is the best case height?
- Randomized BST version - The expected height of a randomly built binary search tree is $O(\log n)$, i.e. a tree where the values inserted are randomly selected.
- Balanced trees - If we can make sure that the trees are balanced, then all of the operations bounded by the height run in time $O(\log n)$.
Red-Black trees, AVL trees, ...
- B-Trees
- A B-Tree is a balanced n-ary tree with the following properties:
* Each node x contains between $t-1$ and $2 t-1$ keys (denoted $n(x)$) stored in increasing order, denoted K_{x} : $K_{x}=K_{x}[1] \leq K_{x}[2] \leq \ldots \leq K_{x}[n(x)]$
* Each internal node also contains $n(x)+1$ children (i.e. between t and $2 t$ children), denoted $C_{x}=C_{x}[1], C_{x}[2], \ldots, C_{x}[n(x)+$ 1]
* The keys of a parent delimit the values that a childs keys can take. Specifically

$$
K_{C_{x}[1]} \leq K_{x}[1] \leq K_{C_{x}[2]} \leq K_{x}[2] \leq \ldots \leq K_{x}[n(x)] \leq K_{C_{x}[n(x)+1]}
$$

For example, if the a node has $K_{x}[i]=15$ and $K_{x}[i+1]=25$ then child $i+1$ must have keys between 15 and 25 .

* All leaves have the same depth
- Example B-Tree
- Why B-Trees vs. Red-Black vs ...?
* Memory is limited or there is huge amount of data to be stored
* In the extreme, only one node is kept in memory and the rest on disk
* Size of the nodes is determined by a page size in memory
* We will count both run-time as well as the number of disk accesses
* Because t is generally large, the height of a B-tree is generally quite small, e.g. if $t=1001$ then a B-Tree of height 2 can over one billion values.
- Height of a B-Tree

For a tree of height h, what is the smallest number of keys a BTree can have?
$\mathrm{h}=0,1$ node
$\mathrm{h}=1,2$ nodes
$\mathrm{h}=2,2 t$ nodes
$\mathrm{h}=3,2 t^{2}$ nodes
and each node must contain at least $t-1$ keys

$$
\begin{aligned}
n & \geq 1+(t-1) \sum_{i=1}^{h} 2 t^{i-1} \\
& =1+2(t-1)\left(\frac{t^{h}-1}{t-1}\right) \\
& =2 t^{h}-1
\end{aligned}
$$

so, $t^{h} \leq(n+1) / 2$ and $h \leq \log _{t} \frac{n+1}{2}$
B-Treesearch (x, k)
$i \leftarrow 1$
while $i \leq n(x)$ and $k>K_{x}[i]$
$i \leftarrow i+1$
if $i \leq n(x)$ and $k=K_{x}[i]$ return (x, i)
if $\operatorname{LEAF}(x)$
return null
else
$\operatorname{DiskREAD}\left(C_{x}[i]\right)$
return B-Treesearch $\left(C_{x}[i], k\right)$

* Is it correct?
* Runtime?
$O(h)=O\left(\log _{t} n\right)$ calls to B-TreeSEarch
$O\left(\log _{t} n\right)$ disk accesses
Each call to B-TreeSEarch takes at most $O(t)$ time, so runtime is $O\left(t \log _{t} n\right)$
* Why don't we use binary search to find the correct location?
- Inserting a node into a B-Tree

Starting at the root, follow the appropriate path down to a leaf node by finding the child such that $k e y_{i}[x]<v a l \leq k e y_{i+1}[x]$. At each node:

* If the node is full (contains $2 t-1$ keys), split the keys about the medial value into two nodes and add this median value to the parent node
* If the node is a leaf node, insert it into it's correct spot

Walk though example in book

* Is it correct?
- Does the item end up in the correct place?
- Are the tree properties maintained?
* Running time?

Without any splitting, similar to B-Treesearch with one additional disk write.

What happens when a node is split?

- 3 disk write operations, one for the parent node and 2 for the split nodes
- Runtime is $O(t)$ to split a node since we're just iterating through the elements a few times
* What's the maximum number of nodes that can be split? $O(h)$
In both of these situations, $O(h)=O\left(\log _{t} n\right)$ disk accesses and runtime of $O(t h)=O\left(t \log _{t} n\right)$
- Deleting a node from a B-Tree
$O\left(\log _{t} n\right)$ disk accesses $O\left(t \log _{t} n\right)$ runtime

These notes are adapted from material found in chapters 12,18 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

