
CS161 - Search Trees

David Kauchak

• Binary Search - Given a sorted list of values A, find a particular
value. Similar to looking something up in a dictionary or phone book:
O(log n)

• Binary search tree (BST) - A binary search tree is a binary tree where
a parents value is greater than all children to the left and less than
or equal to all children to the right. Specifically, given a node x in a
BST:

Left(x) < x ≤ Right(x)

As with other tree structures, can be implemented with pointers or
with an array

Look at example(s)

– Given the definition, what else can we say?

∗ All elements to the left of a node are less than the node

∗ All elements to the right of a node are greater than or equal
to the node

∗ The smallest element is the left-most node

∗ The largest element is the right-most node

– Why not the setup below?:

Left(x) ≤ x ≤ Right(x)

– Which of the set operations is this data structure good/bad for?

∗ Search(S, k) - good

∗ Insert(S, k) - average

1



∗ Delete(S, x) - average

∗ Minimum(S) - good

∗ Maximum(S) - good

– Enumerating the elements in order:

InorderTreeWalk(x)

1 if x 6= null
2 InorderTreeWalk(Left(x))
3 print x
4 InorderTreeWalk(Right(x))

∗ Is it correct?
Definition of BST: Left(x) < x ≤ Right(x) and proof by
induction.

∗ Runtime?
Given a node with k nodes in the left subtree and n− k − 1
nodes in the right subtree, the recurrence is:

T (n) = T (k) + T (n− k − 1) + c

we can solve this, or, answer the following two questions:

1. How much work is done for each call to InorderTreeWalk?

2. How many calls are made to InorderTreeWalk?

∗ What needs to be changed to traverse in reverse order?

∗ Pre-order and post-order traversals?

– Searching for a particular value:

BSTSearch(x, k)

1 if x = null or k = x
2 return x
3 elseif k < x
4 return BSTSearch(Left(x), k)
5 else

6 return BSTSearch(Right(x), k)

2



IterativeBSTSearch(x, k)

1 while x 6= null and k 6= x
2 if k < x
3 x← Left(x)
4 else

5 x← Right(x)
6 return x

1. Is it correct?

2. Runtime? What is the worst case? The node we’re looking
for is a leaf and it is the deepest leaf - O(h)

– Finding the min/max

BSTMin(x)

1 if Left(x) = null
2 return x
3 else

4 return BSTMin(Left(x))

IterativeBSTMin(x)

1 while Left(x) 6= null
2 x← Left(x)
3 return x

∗ Is it correct?
Left(x) < x ≤ Right(x), therefore the smallest element is
the leftmost element.

∗ Runtime? We always visit a leave of the tree. Worst case,
this leave is the lowest leave - O(h)

∗ What needs to be changed to find the max?

– Successor and predecessor

∗ A simple look:

· Predecessor is the right-most node of the left sub-tree,
i.e. the largest node of all of the elements that are less
than a node.

· Successor is the left-most node of the right sub-tree, i.e.
the smallest node of all of the elements that are larger
than a node.

3



∗ What if a node does not have a left or right subtree?

Let’s examine successor. If a node x doesn’t have a right
sub-tree, then either the element is the largest element and
doesn’t have a successor or it’s successor, call it y, is the
element in the tree to which x is the predecessor. So, we
want to find the node y such that x is the right-most node
of the left sub-tree of y. Another way of saying it, we want
to find the lowest ancestor of x whose left child is also an
ancestor of x.

Successor(x)

1 if Right(x) 6= null
2 return BSTMin(Right(x))
3 else

4 y ← Parent(x)
5 while y 6= null and x = Right(y)
6 x← y
7 y ← Parent(y)
8 return y

· Is it correct?

· Runtime? Worst case, we have to traverse the tree from
one of the leaves to the root. O(h)

– Insertion into a BST

4



BSTInsert(T, x)

1 if Root(T ) = null
2 Root(T )← x
3 else

4 y ← Root(T )
5 while y 6= null
6 prev ← y
7 if x < y
8 y ← Left(y)
9 else

10 y ← Right(y)
11 Parent(x)← prev
12 if x < prev
13 Left(prev)← x
14 else

15 Right(prev)← x

∗ Is it correct? Assuming no duplicates in the tree, finds the
appropriate parent and inserts the value. Lines 6-8 make sure
that the BST property is maintained.

What happens if there is a duplicate?

∗ Runtime? O(h)

– Deleting a node: 3 cases

1. If x has no children, remove x

2. If x has only one child, splice out x

3. If x has two children, replace x with its successor in the list.
Will it always have a successor?

∗ Is it correct?

∗ Runtime? O(h) for the call to find the successor.

– Examples

– Most of the algorithms run in time bounded by the height of the
tree.

∗ What is the worst case height? When does this happen?

∗ What is the best case height?

5



• Randomized BST version - The expected height of a randomly built
binary search tree is O(log n), i.e. a tree where the values inserted are
randomly selected.

• Balanced trees - If we can make sure that the trees are balanced, then
all of the operations bounded by the height run in time O(log n).

Red-Black trees, AVL trees, ...

• B-Trees

– A B-Tree is a balanced n-ary tree with the following properties:

∗ Each node x contains between t− 1 and 2t− 1 keys (denoted
n(x)) stored in increasing order, denoted Kx:
Kx = Kx[1] ≤ Kx[2] ≤ ... ≤ Kx[n(x)]

∗ Each internal node also contains n(x) + 1 children (i.e. be-
tween t and 2t children), denoted Cx = Cx[1], Cx[2], ..., Cx[n(x)+
1]

∗ The keys of a parent delimit the values that a childs keys can
take. Specifically

KCx[1] ≤ Kx[1] ≤ KCx[2] ≤ Kx[2] ≤ ... ≤ Kx[n(x)] ≤ KCx[n(x)+1]

For example, if the a node has Kx[i] = 15 and Kx[i+1] = 25
then child i + 1 must have keys between 15 and 25.

∗ All leaves have the same depth

– Example B-Tree

– Why B-Trees vs. Red-Black vs ...?

∗ Memory is limited or there is huge amount of data to be
stored

∗ In the extreme, only one node is kept in memory and the rest
on disk

∗ Size of the nodes is determined by a page size in memory

∗ We will count both run-time as well as the number of disk
accesses

∗ Because t is generally large, the height of a B-tree is generally
quite small, e.g. if t = 1001 then a B-Tree of height 2 can
over one billion values.

6



– Height of a B-Tree

For a tree of height h, what is the smallest number of keys a B-
Tree can have?

h = 0, 1 node
h = 1, 2 nodes
h = 2, 2t nodes
h = 3, 2t2 nodes

and each node must contain at least t− 1 keys

n ≥ 1 + (t− 1)
h∑

i=1

2ti−1

= 1 + 2(t− 1)(
th − 1

t− 1
)

= 2th − 1

so, th ≤ (n + 1)/2 and h ≤ logt
n+1

2

B-TreeSearch(x, k)

1 i← 1
2 while i ≤ n(x) and k > Kx[i]
3 i← i + 1
4 if i ≤ n(x) and k = Kx[i]
5 return (x, i)
6 if Leaf(x)
7 return null
8 else

9 DiskRead(Cx[i])
10 return B-TreeSearch(Cx[i], k)

∗ Is it correct?

∗ Runtime?
O(h) = O(logt n) calls to B-TreeSearch

O(logt n) disk accesses

Each call to B-TreeSearch takes at most O(t) time, so
runtime is O(t logt n)

7



∗ Why don’t we use binary search to find the correct location?

– Inserting a node into a B-Tree

Starting at the root, follow the appropriate path down to a leaf
node by finding the child such that keyi[x] < val ≤ keyi+1[x]. At
each node:

∗ If the node is full (contains 2t− 1 keys), split the keys about
the medial value into two nodes and add this median value
to the parent node

∗ If the node is a leaf node, insert it into it’s correct spot

Walk though example in book

∗ Is it correct?

· Does the item end up in the correct place?

· Are the tree properties maintained?

∗ Running time?
Without any splitting, similar to B-TreeSearch with one
additional disk write.

What happens when a node is split?

· 3 disk write operations, one for the parent node and 2
for the split nodes

· Runtime is O(t) to split a node since we’re just iterating
through the elements a few times

∗ What’s the maximum number of nodes that can be split?
O(h)
In both of these situations, O(h) = O(logt n) disk accesses
and runtime of O(th) = O(t logt n)

– Deleting a node from a B-Tree

O(logt n) disk accesses O(t logt n) runtime

These notes are adapted from material found in chapters 12,18 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

8


