Quicksort

David Kauchak

- Quicksort

```
\(\operatorname{Quicksort}(A, p, r)\)
    if \(p<r\)
        \(q \leftarrow \operatorname{Partition}(A, p, r)\)
        \(\operatorname{Quicksort}(A, p, q-1)\)
        \(\operatorname{Quicksort}(A, q+1, r)\)
```

Partition (A, p, r)
$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$
if $A[j] \leq A[r]$
$i \leftarrow i+1$
swap $A[i]$ and $A[j]$
swap $A[i+1]$ and $A[r]$
return $i+1$

- Is it correct?

Loop invariant: Elements in the subarray $A[p \ldots i]$ are all less than or equal to $A[r]$ and elements in the subarray $A[i+1 \ldots j-1]$ are all greater than $A[r]$

Proof by induction:
Base case: $i=p-1$, so $A[p \ldots i]$ is empty and $j=p$ and $i+1=p$, so $A[i+1 \ldots j-1]$ is also empty.

Inductive case: We'll assume that the invariant is true for iteration j and show that iteration $j+1$ is also true. There are two cases based on line the if statement in line 4.

1. If $A[j]>A[r]$ the only thing that happenens is that j is incremented. This means that $A[p \ldots i]$ remains unchanged and will still contain elements that are less than or equal to $A[r]$. $A[i+1 \ldots j]$ will consist of $A[i+1 \ldots j-1]$, which contains elements greater than $A[r]$ (by induction), and one additionaly element $A[j]$ which we know is greater than $A[r]$, so we know the entire subarray $A[i+1 \ldots j]$ contains elements that are greater than $A[r]$.
2. If $A[j] \leq A[r]$ then two things happen. i is incremented and $A[i]$ is swapped with $A[j] . A[p \ldots i]$ will then contain the elements $A[p \ldots i-1]$, which we already know are less than or equal to $A[r]$, and element $A[j]$, which is also less than or equal to $A[r]$. Subarray $A[i+1 \ldots j]$ will contain the same elements, except the last element, $A[j]$, will be the old first element, $A[i+1]$, and the other elements will be shifted down.

At termination, what does this tell us about the Partition procedure?

If Parition is correct, is Quicksort correct?

- Running time?

What is the running time of Partition?
Iterates over each element of the array and does at most a constant amount of work for each iteration: $\Theta(n)$

Runing time of Quicksort

* Worst case: Array is sorted (or reverse sorted) and each call to partition subdivides the array into a subarray of length $n-1$ and a subarray of length 0 .

Draw the tree

$$
\begin{aligned}
T(n) & =T(n-1)+T(0)+\Theta(n) \\
& =T(n-1)+\Theta(n)
\end{aligned}
$$

which we've seen before: $\Theta\left(n^{2}\right)$

* Best case: The partition algorithm splits the array into two equal (or nearly) equal halves, e.g. 11 elements into two subarrays of length 5 or 10 elements into a subarray of length 4
and a subarray of length 5 .
Draw the tree
$T(n) \leq 2 T(n / 2)+\Theta(n)$
which we have also seen before with Merge-Sort: $\Theta(n \log n)$
* Average case: Intuition 1

How balanced do the splits have to be to maintain the $\Theta(n \log n)$ running time?

Say the Partition procedure always splits the array into constant ratio b-to-a, e.g. 9-to-1.
$T(n) \leq T\left(\frac{a}{a+b} n\right)+T\left(\frac{b}{a+b} n\right)+c n$
Recursion tree: Level 0: cn
Level 1: $c n\left(\frac{a}{a+b}\right)+c n\left(\frac{b}{a+b}\right)=c n$
Level 2: $\operatorname{cn}\left(\frac{a^{2}}{(a+b)^{2}}\right)+\operatorname{cn}\left(\frac{a b}{(a+b)^{2}}\right)+\operatorname{cn}\left(\frac{b a}{(a+b)^{2}}\right)+\operatorname{cn}\left(\frac{b^{2}}{(a+b)^{2}}\right)=$ $c n \frac{a^{2}+2 a b+b^{2}}{(a+b)^{2}}=c n$
Level $3 c n\left(\frac{\left.(a+b)^{2} a+(a+b)^{2} b\right)}{(a+b)^{3}}\right)=c n \frac{(a+b)(a+b)^{2}}{(a+b)^{3}}=c n$
Level d: $c n \frac{(a+b)^{d}}{(a+b)^{d}} \leq c n$
What is the depth of the tree?
What is the minimum depth of the tree?
Assume $a<b$.

$$
\begin{aligned}
\left(\frac{a}{a+b}\right)^{d} n & =1 \\
\left.\log \left(\frac{a}{a+b}\right)^{d} n\right) & =\log 1 \\
\log n+\log \left(\frac{a}{a+b}\right)^{d} & =0 \\
\log n+d \log \left(\frac{a}{a+b}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
d \log \left(\frac{a}{a+b}\right) & =-\log n \\
d & =\frac{-\log n}{\log \left(\frac{a}{a+b}\right)} \\
d & =\frac{\log n}{\log \left(\frac{a+b}{a}\right)} \\
d & =\log _{\frac{a+b}{a} n}
\end{aligned}
$$

What is the maximum depth of the tree?

$$
d=\log _{\frac{a+b}{b}} n
$$

Runtime: Each level has a cost of at most $c n$ with maximum depth $d=\log _{\frac{a+b}{b}} n: O\left(n \log _{\frac{a+b}{b}} n\right)$

Why not $\Theta\left(n \log _{\frac{a+b}{b}} n\right)$?

* Average case: Intuition 2

What would happen if half the time Partition produced a "bad" split of parts sized 0 and $n-1$ and the other half of the time it produced a "good" split of equal sized parts?

Draw the trees for these two cases.

Cost for the 50/50:
Partition cost $=\Theta(n)$
Recursion $=T\left(\frac{n-1}{2}\right)+T\left(\frac{n-1}{2}\right)$
$T(n)=2 T\left(\frac{n-1}{2}\right)+\Theta(n)$
Cost of "bad" followed by 50/50:
Partition cost $=\Theta(n)+\Theta(n-1)=\Theta(n)$
Recursion $=T(0)+T\left(\frac{(n-1)}{2}-1\right)+T\left(\frac{n-1}{2}\right)$
$T(n)=T\left(\frac{n-1}{2}-1\right)+T\left(\frac{n-1}{2}\right)+\Theta(n)$
The cost of the "bad" partition is absorbed. In general, any constant number of "bad" partitions intermixed with "good" partitions will still results in $O(n \log n)$ runtime.

* Randomized-Quicksort

How can we avoid the worst case situation for Quicksort?

Randomized-Partition (A, p, r)
$1 \quad i \leftarrow \operatorname{RANDOM}(p, r)$
2 swap $A[r]$ and $A[i]$
3 returnPartition (A, p, r)

* Analysis of Randomized-Quicksort: Expected running time
How many calls to Partition are made for an input of size n ?
n - Each time a pivot element is selected and that element is never selected again.

What is the cost of an individual call to Partition?
Proportional to the number of iterations of the for loop.
Therefore, if we count the number of comparisons made (if $A[j] \leq A[r])$ then this is a bound on the running time of Quicksort.

Counting the number of comparisons:

Don't try and analyze each call, but analyze the global number of comparisons.

Let z_{i} of $z_{1}, z_{2}, \ldots, z_{n}$ be the i th smallest element and $Z_{i j}$ be the set of elements $Z_{i j}=z_{i}, z_{i+1}, \ldots, z_{j}$ between z_{i} and z_{j}.

For example, if $A=[3,9,7,2]$ then, $z_{1}=2, z_{2}=3, z_{3}=7$, $z_{4}=9$ and $Z_{24}=\{3,7,9\}$.

Let $X_{i j}=I\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}= \begin{cases}1 & \text { if } z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}$ (indicator random variable)

How many times can z_{i} and z_{j} be compared? - At most once, since for a comparison to happen, one of the two must be the pivot, after which it is not included in recursive calls.

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

i.e., the total number of comparisons (and a bound on the overall runtime) - $O(n+X)$, where n is for the calls to Partition and X for each iteration in Partition.

Remember, we want to know what the expected (on average) running time:

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

The pivot element separates the set of numbers into two sets (those less than the pivot and those larger). Elements from one set will never be compared to elements of the other set.

If a pivot x is chosen $z_{i}<x<z_{j}$, then z_{i} and z_{j} will not be compared.

Similarly, from the set $Z_{i j}$, the only time z_{i} and z_{j} will be compared is if either z_{i} or z_{j} is chosen as a pivot. Why?

$$
\begin{aligned}
p\left\{z_{i} \text { is compared to } z_{j}\right\}= & p\left\{z_{i} \text { or } z_{j} \text { is first pivot chosen from } Z_{i j}\right\} \\
= & p\left\{z_{i} \text { is first pivot chosen from } Z_{i j}\right\} \\
& +p\left\{z_{j} \text { is first pivot chosen from } Z_{i j}\right\} \\
= & \frac{1}{j-i+1}+\frac{1}{j-i+1} \\
= & \frac{2}{j-i+1}
\end{aligned}
$$

Line 2: Independent events $(p(a, b)=p(a)+p(b)$ if a and b are independent events)
Line 3: Because the pivot is chosen randomly and there are
$j-i+1$ elements in the set $Z_{i j}$
Let $k=j-i$:

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \\
& =\sum_{i=1}^{n-1} O(\log n) \\
& =O(n \log n)
\end{aligned}
$$

where line 4 occurs because $\sum_{k=1}^{n} 2 / k=\ln n+O(1)=O(\log n)$
Can a run of Randomize-Quicksort take time $\Theta\left(n^{2}\right)$?

- Memory usage?
- Ease of implementation?
- How does randomized quicksort compare to mergesort?
- Comparison based sorting

Asks the question is $i \leq j$.

We've seen Merge-sort and randomized Quicksort which both run on average in time $\Theta(n \log n)$. Can we do better?

Decision tree model

Picture

- A binary tree where each node represents comparison between two elements, i and j
- The branches are labeled with the decision outcome
- Each leaf contains a permutation of the original data representing the sorted order.
- To determine the correct output for a given input, follow the path based on the decisions from the root to a leaf node

How many leaf nodes are there for a decision tree representing the sorting of n elements? - n !, all possible permutation of the original n elements.

Why can't there be less?

What is the height of the tree?

Binary tree of height h contains 2^{h} leaves so,

$$
\begin{aligned}
2^{h} & =n! \\
\log 2^{h} & =\log n! \\
h & =\Omega(n \log n)
\end{aligned}
$$

using Stirling's approximation, $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)$

- Other uses/sources of randomness in algorithms
- Contention resolution
- Algorithm initialization (e.g. clustering)
- Game playing, i.e. inherent randomness in the interacation
- Sorting in linear time

Counting sort

Radix sort
These notes are adapted from material found in chapters 7,8 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

