
Quicksort

David Kauchak

• Quicksort

Quicksort(A, p, r)

1 if p < r
2 q ← Partition(A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

Partition(A, p, r)

1 i← p− 1
2 for j ← p to r − 1
3 if A[j] ≤ A[r]
4 i← i + 1
5 swap A[i] and A[j]
6 swap A[i + 1] and A[r]
7 return i + 1

– Is it correct?

Loop invariant: Elements in the subarray A[p...i] are all less than
or equal to A[r] and elements in the subarray A[i + 1...j − 1] are
all greater than A[r]

Proof by induction:
Base case: i = p− 1, so A[p...i] is empty and j = p and i+ 1 = p,
so A[i + 1...j − 1] is also empty.

Inductive case: We’ll assume that the invariant is true for itera-
tion j and show that iteration j + 1 is also true. There are two
cases based on line the if statement in line 4.

1

1. If A[j] > A[r] the only thing that happenens is that j is
incremented. This means that A[p...i] remains unchanged and
will still contain elements that are less than or equal to A[r].
A[i+1...j] will consist of A[i+1...j −1], which contains elements
greater than A[r] (by induction), and one additionaly element
A[j] which we know is greater than A[r], so we know the entire
subarray A[i+1...j] contains elements that are greater than A[r].

2. If A[j] ≤ A[r] then two things happen. i is incremented and
A[i] is swapped with A[j]. A[p...i] will then contain the elements
A[p...i−1], which we already know are less than or equal to A[r],
and element A[j], which is also less than or equal to A[r]. Sub-
array A[i + 1...j] will contain the same elements, except the last
element, A[j], will be the old first element, A[i+1], and the other
elements will be shifted down.

At termination, what does this tell us about the Partition pro-
cedure?

If Parition is correct, is Quicksort correct?

– Running time?

What is the running time of Partition?

Iterates over each element of the array and does at most a con-
stant amount of work for each iteration: Θ(n)

Runing time of Quicksort

∗ Worst case: Array is sorted (or reverse sorted) and each call
to partition subdivides the array into a subarray of length
n− 1 and a subarray of length 0.

Draw the tree

T (n) = T (n− 1) + T (0) + Θ(n)

= T (n− 1) + Θ(n)

which we’ve seen before: Θ(n2)

∗ Best case: The partition algorithm splits the array into two
equal (or nearly) equal halves, e.g. 11 elements into two sub-
arrays of length 5 or 10 elements into a subarray of length 4

2

and a subarray of length 5.

Draw the tree

T (n) ≤ 2T (n/2) + Θ(n)

which we have also seen before with Merge-Sort: Θ(n log n)

∗ Average case: Intuition 1
How balanced do the splits have to be to maintain the Θ(n log n)
running time?

Say the Partition procedure always splits the array into
constant ratio b-to-a, e.g. 9-to-1.

T (n) ≤ T (a
a+b

n) + T (b
a+b

n) + cn

Recursion tree: Level 0: cn
Level 1: cn(a

a+b
) + cn(b

a+b
) = cn

Level 2: cn(a2

(a+b)2) + cn(ab
(a+b)2) + cn(ba

(a+b)2) + cn(b2

(a+b)2) =

cna2+2ab+b2

(a+b)2
= cn

Level 3 cn((a+b)2a+(a+b)2b)
(a+b)3

) = cn (a+b)(a+b)2

(a+b)3
= cn

Level d: cn (a+b)d

(a+b)d ≤ cn

What is the depth of the tree?
What is the minimum depth of the tree?

Assume a < b.

(
a

a + b
)dn = 1

log(
a

a + b
)dn) = log 1

log n + log(
a

a + b
)d = 0

log n + d log(
a

a + b
) = 0

3

d log(
a

a + b
) = − log n

d =
− log n

log(a
a+b

)

d =
log n

log(a+b
a

)

d = log a+b

a

n

What is the maximum depth of the tree?

d = log a+b

b

n

Runtime: Each level has a cost of at most cn with maximum
depth d = log a+b

b

n: O(n log a+b

b

n)

Why not Θ(n log a+b

b

n)?

∗ Average case: Intuition 2
What would happen if half the time Partition produced a
“bad” split of parts sized 0 and n − 1 and the other half of
the time it produced a “good” split of equal sized parts?

Draw the trees for these two cases.

Cost for the 50/50:
Partition cost = Θ(n)
Recursion = T (n−1

2) + T (n−1
2)

T (n) = 2T (n−1
2) + Θ(n)

Cost of “bad” followed by 50/50:
Partition cost = Θ(n) + Θ(n− 1) = Θ(n)

Recursion = T (0) + T ((n−1)
2 − 1) + T (n−1

2)

T (n) = T (n−1
2 − 1) + T (n−1

2) + Θ(n)

The cost of the “bad” partition is absorbed. In general, any
constant number of “bad” partitions intermixed with “good”
partitions will still results in O(n log n) runtime.

∗ Randomized-Quicksort

4

How can we avoid the worst case situation for Quicksort?

Randomized-Partition(A, p, r)

1 i← Random(p, r)
2 swap A[r] and A[i]
3 returnPartition(A, p, r)

∗ Analysis of Randomized-Quicksort: Expected running
time
How many calls to Partition are made for an input of size
n?
n - Each time a pivot element is selected and that element is
never selected again.

What is the cost of an individual call to Partition?
Proportional to the number of iterations of the for loop.
Therefore, if we count the number of comparisons made (if
A[j] ≤ A[r]) then this is a bound on the running time of
Quicksort.

Counting the number of comparisons:

Don’t try and analyze each call, but analyze the global num-
ber of comparisons.

Let zi of z1, z2, ..., zn be the ith smallest element and Zij be
the set of elements Zij = zi, zi+1, ..., zj between zi and zj .

For example, if A = [3, 9, 7, 2] then, z1 = 2, z2 = 3, z3 = 7,
z4 = 9 and Z24 = {3, 7, 9}.

Let Xij = I{zi is compared to zj} =

{

1 if zi is compared to zj

0 otherwise

(indicator random variable)

How many times can zi and zj be compared? - At most once,
since for a comparison to happen, one of the two must be the
pivot, after which it is not included in recursive calls.

X =
∑n−1

i=1

∑n
j=i+1 Xij

5

i.e., the total number of comparisons (and a bound on the
overall runtime) - O(n + X), where n is for the calls to
Partition and X for each iteration in Partition.

Remember, we want to know what the expected (on average)
running time:

E[X] = E[
n−1
∑

i=1

n
∑

j=i+1

Xij]

=
n−1
∑

i=1

n
∑

j=i+1

E[Xij]

=
n−1
∑

i=1

n
∑

j=i+1

p{zi is compared to zj}

The pivot element separates the set of numbers into two sets
(those less than the pivot and those larger). Elements from
one set will never be compared to elements of the other set.

If a pivot x is chosen zi < x < zj , then zi and zj will not be
compared.

Similarly, from the set Zij, the only time zi and zj will be
compared is if either zi or zj is chosen as a pivot. Why?

p{zi is compared to zj} = p{zi or zj is first pivot chosen from Zij}
= p{zi is first pivot chosen from Zij}

+p{zj is first pivot chosen from Zij}

=
1

j − i + 1
+

1

j − i + 1

=
2

j − i + 1

Line 2: Independent events (p(a, b) = p(a) + p(b) if a and b
are independent events)
Line 3: Because the pivot is chosen randomly and there are

6

j − i + 1 elements in the set Zij

Let k = j − i:

E[X] =
n−1
∑

i=1

n
∑

j=i+1

2

j − i + 1

=
n−1
∑

i=1

n−i
∑

k=1

2

k + 1

<
n−1
∑

i=1

n
∑

k=1

2

k

=
n−1
∑

i=1

O(log n)

= O(n log n)

where line 4 occurs because
∑n

k=1 2/k = ln n+O(1) = O(log n)

Can a run of Randomize-Quicksort take time Θ(n2)?

– Memory usage?

– Ease of implementation?

– How does randomized quicksort compare to mergesort?

• Comparison based sorting

Asks the question is i ≤ j.

We’ve seen Merge-sort and randomized Quicksort which both run
on average in time Θ(n log n). Can we do better?

Decision tree model

Picture

– A binary tree where each node represents comparison between
two elements, i and j

– The branches are labeled with the decision outcome

7

– Each leaf contains a permutation of the original data representing
the sorted order.

– To determine the correct output for a given input, follow the path
based on the decisions from the root to a leaf node

How many leaf nodes are there for a decision tree representing the
sorting of n elements? - n!, all possible permutation of the original n
elements.

Why can’t there be less?

What is the height of the tree?

Binary tree of height h contains 2h leaves so,

2h = n!

log 2h = log n!

h = Ω(n log n)

using Stirling’s approximation,

n! =
√

2πn(n
e
)n(1 + Θ(1

n
))

• Other uses/sources of randomness in algorithms

– Contention resolution

– Algorithm initialization (e.g. clustering)

– Game playing, i.e. inherent randomness in the interacation

• Sorting in linear time

Counting sort

Radix sort

These notes are adapted from material found in chapters 7,8 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

8

