
Recurrences

David Kauchak

Recurrence: a function that is defined with respect to itself on smaller inputs.

• Why are we concerned with recurrences?

The computational costs of divide and conquer algorithms and, in
general, recurive algorithms, can often be described easily using recur-
rences.

• The problem?

Recurrences are easy to define, but they don’t readily express the
actual computational cost of the algorithm. We want to remove the
self-recurrence and determine a more understandable form of the func-
tion.

• The methods

Each approach will provide you with a different way for analyzing re-
currences. Depending on the situation, one or more of the approaches
may be applicable.

– Substitution method: When we have a good guess of the solution,
we start with that then prove that it is correct

– Recursion-tree method: If we don’t have a good guess of the
solution, looking at the recursion tree can help us. Then, we
prove it is correct with the substitution method.

– Master method: Provides solutions for recurrences of the form:

T (n) = aT (n/b) + f(n)

• The substitution method: Guess the form of the solution. Assume
it’s correct and show that the solution is appropriate using a proof by
induction.

1

– T (n) =

{

d if n = 1
T (n) = T (n/2) + d otherwise

Halves the input at each iteration and does a constant amount of
work, e.g. binary search - Guess: O(log2 n)

To show that T (n) = O(log2 n), we need to find constants c and
n0 such that T (n) ≤ c log2 n for all n ≥ n0

We’ll find the constants and do the proof by induction at the
same time.

Base case:

∗ n = 1?

T (1) = d ≤ c log2 1

≤ c · 0 ?

∗ n = 2?

T (2) = 2d ≤ c log2 2

≤ c

which is true if c ≥ 2d.

Inductive case:

Assume T (k) ≤ c log k for k < n and show T (n) ≤ c log n for
some constant c > 0.

T (n) = T (n/2) + d

≤ c log2(n/2) + d (by induction)

= c log2 n − c log2 2 + d

= c log2 n − c + d

≤ c log2 n

if c ≥ d. So, for c ≥ 2d and n0 = 2, T (n) ≤ c log2 n for all n ≥ n0

so, T (n) = O(log2 n)

2

– T (n) =

{

d if n = 1
T (n) = T (n − 1) + n otherwise

At each iteration, iterates over all n, reducing the size by one
element at each step, e.g. Insertion-Sort - O(n2)

Base case:

n = 1?

T (1) = d ≤ c12

= c

which is true if c ≥ d

Inductive step:

Assume T (k) ≤ ck2 for k < n and show T (n) ≤ cn2 for some
constant c > 0.

T (n) = T (n − 1) + n

≤ c(n − 1)2 + n

= c(n2 − 2n + 1) + n

= cn2 − 2cn + c + n

≤ cn2

if

−2cn + c + n ≤ 0

−2cn + c ≤ −n

c(−2n + 1) ≤ −n

c ≥
n

2n − 1

c ≥
1

2 − 1/n

which is true for any c ≥ 1 for n ≥ 1. So, for c ≥ d (assuming
d ≥ 1) and n0 = 1, then T (n) ≤ cn2 for all n ≥ n0, so T (n) =
O(n2).

3

– T (n) = 2T (n/2) + n

Recurses into 2 sub-problems that are half the size and per-
forms some operation on all of the elements, e.g. Merge-Sort

- O(n log n)

T (n) = 2T (n/2) + n

≤ 2cn/2 log(n/2) + n

= 2cn/2 log n − 2cn/2 log 2 + n

≤ cn log n − cn + n

if cn ≥ n, i.e. c ≥ 1

– Some other tricks

∗ Lower order constants

∗ Changing variables

• Recursion-tree method

Sometimes it is difficult to guess the correct answer to the recurrence.
We can look at the tree of recursion calls to get at the correct answer.

T (n) = 3T (n/4) + n2

Recursion tree:

– level 0 - cn2

– level 1 - c(n
4
)2 + c(n

4
)2 + c(n

4
)2 = c 3

16
n2

– level 2 - c(n
16

)2... = c(3
16

)2n2

– level d - c(3
16

)dn2

What is the depth of the tree?

The end of the recursion occurs when:

n/4d = 1

log(n/4d) = 0

log n − log 4d = 0

log n − d log 4 = 0

log4 n − d = 0

d = log4 n

4

What is the cost of the final level?

T (1) for each node and there are

3d = 3log4 n

= 4log4 3log4 n

= 4log4 n log4 3

= 4log4 nlog4 3

= nlog4 3

leaves. For a total cost of θ(nlog4 3) at the bottom level.

The sum of the costs of the entire tree is the cost of the recurrence
relation.

T (n) = cn2 +
3

16
cn2 + (

3

16
)2cn2... + (

3

16
)d−1 + θ(nlog4 3)

= cn2

log4 n−1
∑

i=0

(
3

16
)i + θ(nlog4 3)

=
(3/16)log4 n − 1

(3/16) − 1
cn2 + θ(nlog4 3)

where we obtain the last line from
∑n

k=0 xk = xn+1
−1

x−1
and let x = 3

16

and k = log4 n − 1

• Master method - Provides solutions to recurrences of the form T (n) =
aT (n/b) + f(n)

Many different versions out there ([3] pg. 49)

T (n) = aT (n/b) + O(nd)

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a

The one we’ll use:

5

T (n) = aT (n/b) + f(n)

– if f(n) = O(nlogb a−ε) for ε > 0, then T (n) = Θ(nlogb a)

– if f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

– if f(n) = Ω(nlogb a+ε) for ε > 0 and af(n/b) ≤ cf(n) for c < 1
then T (n) = Θ(f(n))

• Examples (adapted from [1])

– T (n) = 16T (n/4) + n

a = 16
b = 4
f(n) = n

nlogb a = nlog4 16

= n2

Is f(n) = O(n2−ε)?
Is f(n) = Θ(n2)?
Is f(n) = Ω(n2+ε)?

Case 1: Θ(n2)

– T (n) = T (n/2) + 2n

a = 1
b = 2
f(n) = 2n

nlogb a = nlog2 1

= n0

Is f(n) = O(n0−ε)?
Is f(n) = Θ(n0)?
Is f(n) = Ω(n0+ε)?

Is 2n/2 ≤ c2n?

Case 3: Θ(2n)

6

– T (n) = 2T (n/2) + n

a = 2
b = 2
f(n) = n

nlogb a = nlog2 2

= n

Is f(n) = O(n1−ε)?
Is f(n) = Θ(n1)?
Is f(n) = Ω(n1+ε)?

Case 2: n log n

– T (n) = 16T (n/4) + n!

a = 16
b = 4
f(n) = n!

nlogb a = nlog4 16

= n2

Is f(n) = O(n2−ε)?
Is f(n) = Θ(n2)?
Is f(n) = Ω(n2+ε)?

Is 16(n/4)! ≤ cn! for all sufficiently large n?

Case 3: Θ(n!)

– T (n) =
√

2T (n/2) + logn

a = 2
1
2

b = 2
f(n) = log n

nlogb a = nlog2 2
1
2

= n
1
2

=
√

n

7

Is f(n) = O(n.5−ε)?
Is f(n) = Θ(n.5)?
Is f(n) = Ω(n.5+ε)?

Case 1: Θ(
√

n)

– T (n) = 4T (n/2) + n

a = 4
b = 2
f(n) = n

nlogb a = nlog2 4

= n2

Is f(n) = O(n2)?
Is f(n) = Θ(n2)?
Is f(n) = Ω(n2+ε)?

Case 1: Θ(n2)

These notes are adapted from material found in chapter 4 [2].

References

[1] http://www.csd.uwo.ca/∼moreno//CS424/Ressources/master.pdf
[2] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.
[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008.
Algorithms. McGraw-Hill Companies, Inc.

8

