Recurrences

David Kauchak

Recurrence: a function that is defined with respect to itself on smaller inputs.

- Why are we concerned with recurrences?

The computational costs of divide and conquer algorithms and, in general, recurive algorithms, can often be described easily using recurrences.

- The problem?

Recurrences are easy to define, but they don't readily express the actual computational cost of the algorithm. We want to remove the self-recurrence and determine a more understandable form of the function.

- The methods

Each approach will provide you with a different way for analyzing recurrences. Depending on the situation, one or more of the approaches may be applicable.

- Substitution method: When we have a good guess of the solution, we start with that then prove that it is correct
- Recursion-tree method: If we don't have a good guess of the solution, looking at the recursion tree can help us. Then, we prove it is correct with the substitution method.
- Master method: Provides solutions for recurrences of the form:

$$
T(n)=a T(n / b)+f(n)
$$

- The substitution method: Guess the form of the solution. Assume it's correct and show that the solution is appropriate using a proof by induction.

$$
-T(n)= \begin{cases}d & \text { if } n=1 \\ T(n)=T(n / 2)+d & \text { otherwise }\end{cases}
$$

Halves the input at each iteration and does a constant amount of work, e.g. binary search - Guess: $O\left(\log _{2} n\right)$
To show that $T(n)=O\left(\log _{2} n\right)$, we need to find constants c and n_{0} such that $T(n) \leq c \log _{2} n$ for all $n \geq n_{0}$
We'll find the constants and do the proof by induction at the same time.
Base case:

* $n=1$?

$$
\begin{aligned}
T(1)=d & \leq c \log _{2} 1 \\
& \leq c \cdot 0 \quad ?
\end{aligned}
$$

* $n=2$?

$$
\begin{aligned}
T(2)=2 d & \leq c \log _{2} 2 \\
& \leq c
\end{aligned}
$$

which is true if $c \geq 2 d$.

Inductive case:

Assume $T(k) \leq c \log k$ for $k<n$ and show $T(n) \leq c \log n$ for some constant $c>0$.

$$
\begin{aligned}
T(n) & =T(n / 2)+d \\
& \leq c \log _{2}(n / 2)+d \quad \text { (by induction) } \\
& =c \log _{2} n-c \log _{2} 2+d \\
& =c \log _{2} n-c+d \\
& \leq c \log _{2} n
\end{aligned}
$$

if $c \geq d$. So, for $c \geq 2 d$ and $n_{0}=2, T(n) \leq c \log _{2} n$ for all $n \geq n_{0}$ so, $T(n)=O\left(\log _{2} n\right)$
$-T(n)= \begin{cases}d & \text { if } n=1 \\ T(n)=T(n-1)+n & \text { otherwise }\end{cases}$
At each iteration, iterates over all n, reducing the size by one element at each step, e.g. Insertion-Sort - $O\left(n^{2}\right)$
Base case:
$n=1$?

$$
\begin{aligned}
T(1)=d & \leq c 1^{2} \\
& =c
\end{aligned}
$$

which is true if $c \geq d$
Inductive step:
Assume $T(k) \leq c k^{2}$ for $k<n$ and show $T(n) \leq c n^{2}$ for some constant $c>0$.

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& \leq c(n-1)^{2}+n \\
& =c\left(n^{2}-2 n+1\right)+n \\
& =c n^{2}-2 c n+c+n \\
& \leq c n^{2}
\end{aligned}
$$

if

$$
\begin{aligned}
-2 c n+c+n & \leq 0 \\
-2 c n+c & \leq-n \\
c(-2 n+1) & \leq-n \\
c & \geq \frac{n}{2 n-1} \\
c & \geq \frac{1}{2-1 / n}
\end{aligned}
$$

which is true for any $c \geq 1$ for $n \geq 1$. So, for $c \geq d$ (assuming $d \geq 1$) and $n_{0}=1$, then $T(n) \leq c n^{2}$ for all $n \geq n_{0}$, so $T(n)=$ $O\left(n^{2}\right)$.
$-T(n)=2 T(n / 2)+n$
Recurses into 2 sub-problems that are half the size and performs some operation on all of the elements, e.g. MERGE-Sort - $O(n \log n)$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2 c n / 2 \log (n / 2)+n \\
& =2 c n / 2 \log n-2 c n / 2 \log 2+n \\
& \leq c n \log n-c n+n
\end{aligned}
$$

if $c n \geq n$, i.e. $c \geq 1$

- Some other tricks
* Lower order constants
* Changing variables
- Recursion-tree method

Sometimes it is difficult to guess the correct answer to the recurrence. We can look at the tree of recursion calls to get at the correct answer.
$T(n)=3 T(n / 4)+n^{2}$
Recursion tree:

- level $0-c n^{2}$
- level $1-c\left(\frac{n}{4}\right)^{2}+c\left(\frac{n}{4}\right)^{2}+c\left(\frac{n}{4}\right)^{2}=c \frac{3}{16} n^{2}$
- level $2-c\left(\frac{n}{16}\right)^{2} \ldots=c\left(\frac{3}{16}\right)^{2} n^{2}$
- level d $-c\left(\frac{3}{16}\right)^{d} n^{2}$

What is the depth of the tree?
The end of the recursion occurs when:

$$
\begin{aligned}
n / 4^{d} & =1 \\
\log \left(n / 4^{d}\right) & =0 \\
\log n-\log 4^{d} & =0 \\
\log n-d \log 4 & =0 \\
\log _{4} n-d & =0 \\
d & =\log _{4} n
\end{aligned}
$$

What is the cost of the final level?
$T(1)$ for each node and there are

$$
\begin{aligned}
3^{d} & =3^{\log _{4} n} \\
& =4^{\log _{4} 3^{\log _{4} n}} \\
& =4^{\log _{4} n \log _{4} 3} \\
& =4^{\log _{4} n^{\log _{4} 3}} \\
& =n^{\log _{4} 3}
\end{aligned}
$$

leaves. For a total cost of $\theta\left(n^{\log _{4} 3}\right)$ at the bottom level.
The sum of the costs of the entire tree is the cost of the recurrence relation.

$$
\begin{aligned}
T(n) & =c n^{2}+\frac{3}{16} c n^{2}+\left(\frac{3}{16}\right)^{2} c n^{2} \ldots+\left(\frac{3}{16}\right)^{d-1}+\theta\left(n^{\log _{4} 3}\right) \\
& =c n^{2} \sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i}+\theta\left(n^{\log _{4} 3}\right) \\
& =\frac{(3 / 16)^{\log _{4} n}-1}{(3 / 16)-1} c n^{2}+\theta\left(n^{\log _{4} 3}\right)
\end{aligned}
$$

where we obtain the last line from $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$ and let $x=\frac{3}{16}$ and $k=\log _{4} n-1$

- Master method - Provides solutions to recurrences of the form $T(n)=$ $a T(n / b)+f(n)$

Many different versions out there ([3] pg. 49)
$T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

The one we'll use:

$$
T(n)=a T(n / b)+f(n)
$$

- if $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
- if $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for $\epsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ then $T(n)=\Theta(f(n))$
- Examples (adapted from [1])

$$
\begin{aligned}
& -T(n)=16 T(n / 4)+n \\
& \quad a=16 \\
& \quad b=4 \\
& \quad f(n)=n
\end{aligned}
$$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{4} 16} \\
& =n^{2}
\end{aligned}
$$

Is $f(n)=O\left(n^{2-\epsilon}\right)$?
Is $f(n)=\Theta\left(n^{2}\right)$?
Is $f(n)=\Omega\left(n^{2+\epsilon}\right)$?
Case 1: $\Theta\left(n^{2}\right)$
$-T(n)=T(n / 2)+2^{n}$
$a=1$
$b=2$
$f(n)=2^{n}$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{2} 1} \\
& =n^{0}
\end{aligned}
$$

Is $f(n)=O\left(n^{0-\epsilon}\right)$?
Is $f(n)=\Theta\left(n^{0}\right)$?
Is $f(n)=\Omega\left(n^{0+\epsilon}\right)$?
Is $2^{n / 2} \leq c 2^{n}$?

Case 3: $\Theta\left(2^{n}\right)$

$$
\begin{aligned}
& -T(n)=2 T(n / 2)+n \\
& \quad a=2 \\
& \quad b=2 \\
& f(n)=n
\end{aligned}
$$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{2} 2} \\
& =n
\end{aligned}
$$

Is $f(n)=O\left(n^{1-\epsilon}\right)$?
Is $f(n)=\Theta\left(n^{1}\right)$?
Is $f(n)=\Omega\left(n^{1+\epsilon}\right)$?
Case 2: $n \log n$

$$
\begin{aligned}
- & T(n)=16 T(n / 4)+n! \\
& a=16 \\
& b=4 \\
& f(n)=n!
\end{aligned}
$$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{4} 16} \\
& =n^{2}
\end{aligned}
$$

Is $f(n)=O\left(n^{2-\epsilon}\right)$?
Is $f(n)=\Theta\left(n^{2}\right)$?
Is $f(n)=\Omega\left(n^{2+\epsilon}\right)$?
Is $16(n / 4)$! $\leq c n$! for all sufficiently large n ?
Case 3: $\Theta(n!)$
$-T(n)=\sqrt{2} T(n / 2)+\log n$
$a=2^{\frac{1}{2}}$
$b=2$
$f(n)=\log n$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{2} 2^{\frac{1}{2}}} \\
& =n^{\frac{1}{2}} \\
& =\sqrt{n}
\end{aligned}
$$

Is $f(n)=O\left(n^{.5-\epsilon}\right)$?
Is $f(n)=\Theta\left(n^{.5}\right)$?
Is $f(n)=\Omega\left(n^{.5+\epsilon}\right)$?
Case 1: $\Theta(\sqrt{n})$
$-T(n)=4 T(n / 2)+n$
$a=4$
$b=2$
$f(n)=n$

$$
\begin{aligned}
n^{\log _{b} a} & =n^{\log _{2} 4} \\
& =n^{2}
\end{aligned}
$$

Is $f(n)=O\left(n^{2}\right)$?
Is $f(n)=\Theta\left(n^{2}\right)$?
Is $f(n)=\Omega\left(n^{2+\epsilon}\right)$?
Case 1: $\Theta\left(n^{2}\right)$
These notes are adapted from material found in chapter 4 [2].

References

[1] http://www.csd.uwo.ca/~moreno//CS424/Ressources/master.pdf
[2] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.
[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008. Algorithms. McGraw-Hill Companies, Inc.

