Recurrences

David Kauchak

Recurrence: a function that is defined with respect to itself on smaller inputs.

e Why are we concerned with recurrences?

The computational costs of divide and conquer algorithms and, in
general, recurive algorithms, can often be described easily using recur-
rences.

e The problem?

Recurrences are easy to define, but they don’t readily express the
actual computational cost of the algorithm. We want to remove the
self-recurrence and determine a more understandable form of the func-
tion.

e The methods

Each approach will provide you with a different way for analyzing re-
currences. Depending on the situation, one or more of the approaches
may be applicable.

— Substitution method: When we have a good guess of the solution,
we start with that then prove that it is correct

— Recursion-tree method: If we don’t have a good guess of the
solution, looking at the recursion tree can help us. Then, we
prove it is correct with the substitution method.

— Master method: Provides solutions for recurrences of the form:
T(n) =aT(n/b) + f(n)

e The substitution method: Guess the form of the solution. Assume
it’s correct and show that the solution is appropriate using a proof by
induction.

T(n) =T(n/2) +d otherwise
Halves the input at each iteration and does a constant amount of
work, e.g. binary search - Guess: O(logyn)

_T(n):{d ifn=1

To show that T'(n) = O(logy n), we need to find constants ¢ and
ng such that T'(n) < clogy n for all n > ng

We’ll find the constants and do the proof by induction at the
same time.

Base case:
* n=17
T(l)=d < clogyl
< ¢-0 7
* n =27
T(2)=2d < clog,2
< c

which is true if ¢ > 2d.

Inductive case:

Assume T'(k) < clogk for k < n and show T'(n) < clogn for
some constant ¢ > 0.

T(n) = T(n/2)+d
< clogy(n/2) +d (by induction)
= clogyn —clogy2+d
= clogon—c+d
< clogyn

if ¢ > d. So, for ¢ > 2d and ng = 2, T'(n) < clogy n for all n > ng
so, T'(n) = O(logy n)

T(n)=T(n—1)+n otherwise
At each iteration, iterates over all n, reducing the size by one
element at each step, e.g. INSERTION-SORT - O(n?)
Base case:
n=17

_T(n):{d ifn=1

T(1)=d < cl?

which is true if ¢ > d
Inductive step:

Assume T'(k) < ck? for k < n and show T(n) < cn? for some
constant ¢ > 0.

Tn) = T(n—1)4n
< ¢n—172%+n
= c¢n*-2n+1)+n
= en?—2m+c+n
< en?
if
—2en+c+n < 0
—2cn+c¢ < —n
co(—2n+1) < —-n
c > i
- 2n—1
e > L
~ 2-1/n

which is true for any ¢ > 1 for n > 1. So, for ¢ > d (assuming
d > 1) and ng = 1, then T'(n) < en? for all n > ng, so T'(n) =
O(n?).

— T(n)=2T(n/2)+n
Recurses into 2 sub-problems that are half the size and per-
forms some operation on all of the elements, e.g. MERGE-SORT

- O(nlogn)
T(n) = 2T (n/2)+n
< 2cn/2log(n/2) +n
= 2cn/2logn —2cn/2log2 +n
< cnlogn—cn+n

ifen >n,ie. ¢c>1
— Some other tricks
* Lower order constants
+ Changing variables

e Recursion-tree method

Sometimes it is difficult to guess the correct answer to the recurrence.
We can look at the tree of recursion calls to get at the correct answer.

T(n) = 3T(n/4) + n?

Recursion tree:

— level 0 - cn?
— level 1 - c(%)2 +c %)2 + c(%)2 = c%n2
— level 2 - ¢(&)2... = ¢(2)*n?
— level d - ¢(:%)%n?
What is the depth of the tree?
The end of the recursion occurs when:
n/4? = 1
log(n/4?) = 0
logn —log4? = 0
logn —dlogd = 0
logymn—d = 0
d = logyn

What is the cost of the final level?

T'(1) for each node and there are

3d — 310g4 n
410g4 3log4 n
_ 4log4 nlog, 3
logy 3

_ 4log4 n

nlog4 3

leaves. For a total cost of 6(n!°813) at the bottom level.

The sum of the costs of the entire tree is the cost of the recurrence
relation.

3 3 3
T(n) = Cn2 + 1_6677’2 + (1_6)20712“' 4 (E)d—l + 0(n10g43)
= o’ logleél(i)i +0(n/os?)
1=0 16

logyn _
- (3/(:?/3)16)4— 1 Len? 4 0(n'o%:?)

X . n+1_
where we obtain the last line from >°7_, k=2 po !

and k =logyn—1

and let z =

Master method - Provides solutions to recurrences of the form 7T'(n)
aT(n/b) + f(n)
Many different versions out there ([3] pg. 49)

T(n) = aT(n/b) + O(n?)

O(n9) if d > logya
T(n) =< O(nlogn) if d=log,a
O(n'°&) if d < log, a

The one we’ll use:

T(n) = aT(n/b) + f(n)

— if f(n) = O(n'°827€) for € > 0, then T'(n) = O(n'°&*)
— if f(n) = ©(n'°# %), then T'(n) = O(n'°& *log n)
— if f(n) = Q(n'°89%€) for € > 0 and af(n/b) < cf(n) for c < 1
then T'(n) = ©(f(n))
e Examples (adapted from [1])

— T(n) =16T(n/4) +n

a=16
b=14
f(n)=n
nlogba — nlog4 16
Is f(n) = O(n=)?
Is f(n) = ©(n?)?
Is f(n) = Q(n**)
Case 1: O(n?)
~ T(n) = T(n/2) +2"
a=1
b=2
f(n)=2"
nlogba — nlog2 1
no
Is f(n) = O(n"=)?
Is f(n) = ©(nY)?
Is f(n) = Q(n%+)?
Is 27/2 < 217

Case 3: ©(2")

— T(n)=2T(n/2)+n

a=2
b=2
fln)=mn
nlogba — nlog2 2
=n
Is f(n) =0(n!'=)?
Is f(n) = ©(n')?
Is f(n) = Q(n'*)?
Case 2: nlogn
— T(n) =16T(n/4) + n!
a =16
b=14
f(n) = n!
nlogba — nlog4 16
= n2
Is f(n) = O(n?9)?
Is f(n) = ©(n?)?
Is f(n) = Q(n?")?
Is 16(n/4)! < cn! for all sufficiently large n?
Case 3: ©(n!)
— T(n) = V2T (n/2) + logn
a = 2%
b=2
f(n) =logn
nlogb a _ nlog2 2%
= ’n%
= n

Is f(n) = O(n®79)?
Is f(n) = O(n?®)?
Is f(n) = Q(n7)?
Case 1: ©(y/n

nlogba — nlog24

These notes are adapted from material found in chapter 4 [2].

References

[1] http://www.csd.uwo.ca/~moreno//CS424/Ressources/master.pdf

[2] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008.
Algorithms. McGraw-Hill Companies, Inc.

