
CS161 - Big O

David Kauchak

We need a way to talk about that computational cost of an algorithm that
focuses on the essential parts and ignores details that are not relavent and
that is somewhat agnostic to the underlying hardware.

How would you answer the question, what is the running time of algorithm
x?

We saw some of this last time in our examination of Insertion-Sort and
Merge-Sort.

• Asymptotic notation:

– Precisely calculating the actual steps is tedious and not generally
useful

– Different operations take different amounts of time. Even from
run to run, things such as caching, etc. will complicate things

– Want to identify categories of algorithmic runtimes

– Compare different algorithms

f1(n) takes n2 steps
f2(n) takes 3n + 100 steps
f3(n) takes 2n + 1 steps

Which algorithm is better? Is the difference between f2 and f3 impor-
tant/significant?

• Runtime examples

1



n n log n n2 n3 2n n!

n = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 18 min 1025 years
n = 100 < 1 sec < 1 sec 1 sec 1s 1017 years very long
n = 1000 < 1 sec < 1 sec 1 sec 18 min very long very long
n = 10, 000 < 1 sec < 1 sec 2 min 12 days very long very long
n = 100, 000 < 1 sec 2 sec 3 hours 32 years very long very long
n = 1, 000, 000 1 sec 20 sec 12 days 31,710 years very long very long

(adapted from [2], Table 2.1, pg. 34)

• O(g(n)) is the set of functions:

O(g(n)) = {f(n) : there exists positive constants c and n0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Ω(g(n)) is the set of functions:

Ω(g(n)) = {f(n) : there exists positive constants c and n0 such that
0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

• Θ-notation

Θ(g(n)) is the set of functions:

Θ(g(n)) = {f(n) : there exists positive constants c1, c2, and n0 such that
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

Note Θ implies both an upper and lower bound

• Picture of asymptotic bound (e.g. CLRS pg. 43)

• Proving bounds - Find constants c and n0 that satisfy the inequalities

Show that 5n2 − 15n + 100 is θ(n2)

First, show O(n2), i.e. that there exists positive constants c and n0

such that 5n2 − 15n + 100 ≤ cn2 for all n > n0

cn2 ≥ 5n2 − 15n + 100

c ≥ 5 − 15/n + 100/n2

We can ignore the −15/n term, since it is always negative. If we let
n0 = 1 and c = 5 + 100 = 105 (or anything greater than 105), then

2



for all n ≥ n0 the above inequality is satisfied since 100/n2 only get
smaller as n increases.

Second, show Ω(n2), i.e. that there exists positive constance c and n0

such that 5n2 − 15n + 100 ≥ cn2 of all n > n0

c ≤ 5 − 15/n + 100/n2

Like we did above, we can ignore the 100/n2 term since it is always
positive. If we let n0 = 4 and c = 5 − 15/4 = 1.25 (or anything less
than 1.25), then the above inequality is satisfied since 15/n is always
decreasing as n increases.

• Proving that bounds don’t hold

5n2 6= θ(n)

Only have to show that one of the conditions doesn’t hold (i.e. Ω or O).

Suppose some c and n0 exists such that

cn ≥ 5n2

for all n ≥ n0, but then n ≤ c/5 which cannot hold for all n since for
any constant c we can always pick an n large enough such that the
above is not satisfied.

• Some rules of thumb (adapted from [1], pg. 8):

– Multiplicative constants can be omitted: 14n2 becomes n2

– Lower order functions can be omitted: n+5 become n and n2 +n
become n

– na dominates nb if a > b: for instance, n2 dominates n

– an dominates bn if a > b: for instance 3n dominates 2n

– Any exponential dominates any polynomial: 3n dominates n5

– Any polynomial dominates any logorithm: n dominates (log n)3.
This also means n2 dominates n log n.

– DO NOT omit lower order terms of different variables: n2 + m
does NOT become n2

3



• Some examples:

– O(1) - constant time

Regardless of the size of the input, there is a fixed amount of
work

∗ add two 32 bit numbers

∗ determine if a number is even or odd

∗ sum the first 20 elements of an array

∗ delete an element from a doubly linked list

– O(log n) - logarithmic

At each iteration of the algorithm, discard some proportion of
the input (often half)

– O(n) - linear

Do some constant amount of work on each element of the input

∗ find an item in a linked list

∗ determine the largest element in the array

– O(n log n)

Divide and conquer algorithms with a linear amount of work to
recombine

∗ sort a list of numbers with Merge-Sort

∗ FFT

– O(n2)

Double nested loops that iterate over the data

∗ Insertion-Sort

– O(2n)

∗ Enumerate all possible subsets

∗ Traveling salesman using dynamic programming

– O(n!)

∗ Enumerate all permutation

∗ determinant of a matrix with exansion by minors

Why is it hard to find examples of algorithms in these latter categories?

These notes are adapted from material found in chapter 3 of [4].

4



References

[1] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008.
Algorithms. McGraw-Hill Companies, Inc.
[2] Jon Kleinberg and Eva Tardos. 2006. Algorithm Design. Pearson Edu-
cation, Inc.
[3] http://en.wikipedia.org/wiki/Big O notation
[4] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

5


