
CS161 - Introduction

David Kauchak

• “For me, great algorithms are the poetry of computation. Just like
verse, they can be terse, allusive, dense and even mysterious. But once
unlocked, they cast a brilliant new light on some aspect of computing.”
– Francis Sullivan

• What is an algorithm?

• Examples

– sort a list of numbers

– find a route from one place to another (cars, packet routing, phone
routing, ...)

– find the longest common substring between two strings

– add two numbers

– microchip wiring/design (VLSI)

– solving sudoku

– cryptography

– compression (file, audio, video)

– spell checking

– pagerank

– classify a web page

– ...

• What properties of algorithms are we interested in?

– does it terminate?

– is it correct, i.e. does it do what we think it’s supposed to do?

– what are the computational costs?

– what are the memory/space costs?

1



– what happens to the above with different inputs?

– how difficult is it to implement and implement correctly?

• Why are we interested? Most of the algorithms/data structure we
will discuss have been around for a while and are implemented. Why
should we study them?

– For example, look at the java.util package

∗ Hashtable

∗ LinkedList

∗ Stack

∗ TreeSet

∗ Arrays.binarySearch

∗ Arrays.sort

– Know what’s out there/possible/impossible

– Know the right algorithm to use

– Tools for analyzing new algorithms

– Tools for developing new algorithms

– interview questions? :)

∗ Describe the algorithm for a depth-first graph traversal.

∗ Write a function f(a, b) which takes two character string
arguments and returns a string containing only the characters
found in both strings in the order of a. Write a version which
is O(n2) and one which is O(n).

∗ You’re given an array containing both positive and negative
integers and required to find the sub-array with the largest
sum (O(n) a la KBL). Write a routine in C for the above.

∗ Reverse a linked list

∗ Insert in a sorted list

∗ Write a function to find the depth of a binary tree

∗ ...

– Personal experience: Understanding and developing new algo-
rithms has been one of the most useful tools/skills for me.

∗ Hierarchical clustering

∗ Perceptron learning algorithm

∗ Sparse vector manipulation

2



∗ Text indexing

∗ Word misspellings

∗ Feature grouping

∗ ...

• Pseodocode

– A way to discuss how an algorithm works that is language agnos-
tic and without being encumbered with actual implementation
details.

– Should give enough detail for a person to undersand, analyze and
implement the algorithm.

– Conventions

Mystery1(A)

1 x← −∞
2 for i← 1 to length[A]
3 if A[i] > x
4 x← A[i]
5 return x

Mystery2(A)

1 for i← 1 to blength(A)/2c
2 swap A[i] and A[length(A)− (i− 1)]

– Comments

∗ array indices start at 1 not 0

∗ we may use notation such as ∞, which, when translated to
code, would be something like Integer.MAX VALUE

∗ use shortcuts for simple function (e.g. swap) to make pseu-
docode simpler

∗ we’ll use ← instead of = to avoid ambiguity

∗ Indentation specifies scope

• Sorting

Input: An array of numbers A
Output: The array of numbers in sorted order, i.e. A[i] ≤ A[j] ∀i < j

– cards

3



∗ sort cards: all cards in view

∗ sort cards: only view one card at a time

– Insertion sort

Insertion-Sort(A)

1 for j ← 2 to length[A]
2 current← A[j]
3 i← j − 1
4 while i > 0 and A[i] > current
5 A[i + 1]← A[i]
6 i← i− 1
7 A[i + 1]← current

– Does it terminate?

– Is the algorithm correct?

Loop invariant: A statement about the algorithm that is always
true regardless of where we are in the algorithm

Insertion-Sort invariant: At the start of each iteration of the
for loop of lines 1-7 the subarray A[1..j − 1] is the sorted version
of the original elements of A[1..j − 1]

To prove, need to show two things:

∗ Base case: invariant is true before the loop

∗ Inductive case: it is true after each iteration

upon termination of the loop, the invariant should help you show
something useful about the algorithm.

Proof

– Running time: How long does it take? How many computational
“steps” will be executed?

What is our computational model? Turing machine? We’ll as-
sume a random-access machine (RAM) model of computation.

Examine costs for each step

4



T (n) = c1n+c2(n−1)+c3
∑n

j=2 tj +c4
∑n

j=2(tj−1)+c5
∑n

j=2(tj−
1) + c6(n− 1)

∗ Best case: array is sorted
tj = 1
∑n

j=2 = n - Linear

∗ Worst case: array is in reverse sorted order
tj = j
∑n

j=2 = n + n− 1 + n− 2 + ·+ 2 = n(n+1)
2 − 1 - Quadratic

∗ Average case: array is in random order
The array up through j is sorted. How many entries on
average will we have to analyze before in the sorted portion of
the array to find the correct location for the current element?
tj = j/2
∑n

j=2 =
n(n+1)

2
2 − 1/2 - Quadratic

∗ Can we do better? What about if we used binary search to
find the correct position?

• Divide and Conquer

– Divide the problem into smaller subproblems

– Conquer the subproblems by solving the subproblems. Often this
just involves waiting until the problem is small enough that it is
trivial to solve.

– Combine the divided subproblems into a final solution.

Merge-Sort(A)

1 if length[A] == 1
2 return A
3 else

4 q ← blength[A] /2c
5 create arrays L[1..q] and R[q + 1.. length[A]]
6 copy A[1..q] to L
7 copy A[q + 1.. length[A]] to R
8 LS ←Merge-Sort(L)
9 RS ←Merge-Sort(R)

10 return Merge(LS, RS)

5



Merge(L,R)

1 create array B of length length[L] + length[R]
2 i← 1
3 j ← 1
4 for k ← 1 to length[B ]
5 if j > length[R] or (i ≤ length[L] and L[i] ≤ R[j])
6 B[k]← L[i]
7 i← i + 1
8 else

9 B[k]← R[j]
10 j ← j + 1
11 return B

– Is the algorithm correct?

Merge invariant: At the end of each iteration of the for loop of
lines 4-10 the subarray B[1..k] contains the smallest k elements
from L and R in sorted order.

Proof?

– Running time

T (n) =

{

c if n is small
2T (n/2) + D(n) + C(n) otherwise

D(n) Divide: copy the input array into two halves - linear, Θ(n)

C(n) Combine: merges the two sorted halves - linear, Θ(n)

T (n) =

{

c if n is small
T (n/2) + cn otherwise

Analyze the tree on pg. 35

cn log n + cn

Merge-Sort2(A, p, r)

1 if p < r
2 q ← b(p+r)/2c
3 Merge-Sort2(A, p, q)
4 Merge-Sort2(A, q + 1, r)
5 Merge2(A, p, q, r)

6



Merge2(A, p, q, r)

1 n1 ← q − p + 1 � length of the left array
2 n2 ← r − q � length of the right array
3 create arrays L[1..n1 + 1] and R[1...n2 + 1]
4 for i← 1 to n1

5 L[i]← A[p + i− 1]
6 for j ← 1 to n2

7 R[j]← A[q + j]
8 L[n1 + 1]←∞
9 R[n2 + 1]←∞

10 i← 1
11 j ← 1
12 for k ← p to r
13 if L[i] ≤ R[j]
14 A[k]← L[i]
15 i← i + 1
16 else

17 A[k]← R[j]
18 j ← j + 1

– Is the algorithm correct?

– Running time

Same as Merge-Sort except D(n) = c

This still results in:

T (n) = 2T (n/2) + cn

– What are the memory/space costs of the two merge sort algo-
rithms?

Memory usage is different than time usage: we can reuse memory!
In general, we’re interested in maximum memory usage, but may
also be interested in average memory usage while processing.

– How hard are the two merge sort versions to implement/debug?

• Bubble sort

7



Bubble-Sort(A)

1 sorted← false
2 while sorted = false
3 sorted← true
4 for i← 1 to length[A]−1
5 if A[i] > A[i + 1]
6 swap A[i] and A[i + 1]
7 sorted← false

These notes are adapted from material found in chapters 1 + 2 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

8


