(CS161 - Introduction

David Kauchak

e “For me, great algorithms are the poetry of computation. Just like
verse, they can be terse, allusive, dense and even mysterious. But once
unlocked, they cast a brilliant new light on some aspect of computing.”
— Francis Sullivan

e What is an algorithm?

o Examples

sort a list of numbers

find a route from one place to another (cars, packet routing, phone
routing, ...)

find the longest common substring between two strings
add two numbers

microchip wiring/design (VLSI)

solving sudoku

cryptography

compression (file, audio, video)

spell checking

pagerank

classify a web page

e What properties of algorithms are we interested in?

does it terminate?
is it correct, i.e. does it do what we think it’s supposed to do?
what are the computational costs?

what are the memory/space costs?



— what happens to the above with different inputs?

— how difficult is it to implement and implement correctly?

e Why are we interested? Most of the algorithms/data structure we
will discuss have been around for a while and are implemented. Why
should we study them?

— For example, look at the java.util package

*

*

*
*
*
*

Hashtable
LinkedList

Stack

TreeSet
Arrays.binarySearch
Arrays.sort

— Know what’s out there/possible/impossible

— Know the right algorithm to use

— Tools for analyzing new algorithms

— Tools for developing new algorithms

— interview questions? :)

*

*

*

*

Describe the algorithm for a depth-first graph traversal.
Write a function f(a, b) which takes two character string
arguments and returns a string containing only the characters
found in both strings in the order of a. Write a version which
is O(n?) and one which is O(n).

You're given an array containing both positive and negative
integers and required to find the sub-array with the largest
sum (O(n) a la KBL). Write a routine in C for the above.
Reverse a linked list

Insert in a sorted list

Write a function to find the depth of a binary tree

— Personal experience: Understanding and developing new algo-
rithms has been one of the most useful tools/skills for me.

*

*

*

Hierarchical clustering
Perceptron learning algorithm

Sparse vector manipulation



Text indexing
Word misspellings
Feature grouping

* X X K

e Pseodocode

— A way to discuss how an algorithm works that is language agnos-
tic and without being encumbered with actual implementation
details.

— Should give enough detail for a person to undersand, analyze and
implement the algorithm.

— Conventions
MYSTERY1(A)
1 z+ —o0
2 for i < 1 to length[A]
3 if Ali] >«
4 x — Al
5 returnzx
MYSTERY2(A)
1 for i« 1 to |length(A)/2]
2 swap A[i] and Allength(A) — (i — 1)]
— Comments

* array indices start at 1 not 0

* we may use notation such as oo, which, when translated to
code, would be something like Integer. MAX_VALUE

* use shortcuts for simple function (e.g. swap) to make pseu-
docode simpler

* we’ll use « instead of = to avoid ambiguity
+ Indentation specifies scope

e Sorting

Input: An array of numbers A
Output: The array of numbers in sorted order, i.e. Afi] < A[j] Vi < j

— cards



* sort cards: all cards in view

% sort cards: only view one card at a time

— Insertion sort

INSERTION-SORT(A)
1 for j « 2 to length[A]

2 current «— Alj]

3 1—j—1

4 while i > 0 and A[i] > current
5 Ali + 1] «— A[i]

6 1+—1—1

7 Ali + 1] < current

— Does it terminate?

— Is the algorithm correct?

Loop invariant: A statement about the algorithm that is always
true regardless of where we are in the algorithm

INSERTION-SORT invariant: At the start of each iteration of the
for loop of lines 1-7 the subarray A[l..j — 1] is the sorted version
of the original elements of A[l..j — 1]

To prove, need to show two things:

* Base case: invariant is true before the loop

* Inductive case: it is true after each iteration

upon termination of the loop, the invariant should help you show
something useful about the algorithm.

Proof

— Running time: How long does it take? How many computational
“steps” will be executed?

What is our computational model? Turing machine? We’'ll as-
sume a random-access machine (RAM) model of computation.

Examine costs for each step



T(n) =cin+co(n—1)+cs 2?22 tj+cy 2?22(753'—1)—1—05 Z;-Z:Q(tj—
1) + 66(7’L - 1)

* Best case: array is sorted
tj=1
> j—2 = n - Linear
* Worst case: array is in reverse sorted order
tj=1J
io=ntn—-14+4n—-2+-+2= %—1— Quadratic
* Average case: array is in random order
The array up through j is sorted. How many entries on
average will we have to analyze before in the sorted portion of
the array to find the correct location for the current element?
tj=j/2
n(n+1)
79 =—3— —1/2 - Quadratic
+* Can we do better? What about if we used binary search to

find the correct position?

e Divide and Conquer

— Divide the problem into smaller subproblems

— Congquer the subproblems by solving the subproblems. Often this
just involves waiting until the problem is small enough that it is
trivial to solve.

— Combine the divided subproblems into a final solution.

MERGE-SORT(A)
1 if length|A] ==
2 return A
3 else
1 g — llength[4] /2]
5 create arrays L[l..q] and R[q + 1.. length[A]]
6 copy A[l..q] to L
7 copy Alq + 1..length[A]] to R
8 LS «— MERGE-SORT(L)
9 RS — MERGE-SORT(R)
10 return MERGE(LS, RS)



MERGE(L, R)

1 create array B of length length[L] 4 length|R)]
2 11
3 j«1
4 for k < 1 to length[B]
5 if j > length[R] or (i < length[L] and L[i] < R[j])
6 B[k] < LIi]
7 t—1+1
8 else
9 Blk] — R[j]
10 j—ji+1

11 return B

— Is the algorithm correct?

MERGE invariant: At the end of each iteration of the for loop of
lines 4-10 the subarray B[l..k| contains the smallest k elements
from L and R in sorted order.

Proof?

— Running time

T(n) = c if n is small
n= 2T (n/2) + D(n) + C(n) otherwise

D(n) Divide: copy the input array into two halves - linear, ©(n)
C'(n) Combine: merges the two sorted halves - linear, ©(n)

T(n) = c if n is small
| T(n/2) +cn  otherwise

Analyze the tree on pg. 35
cnlogn +cn

MERGE-SORT2(A, p, )

1 ifp<r

2 ¢ L(p+1)/2]

3 MERGE-SORT2(A, p, q)

4 MERGE-SORT2(A, ¢+ 1,7)
5 MERGE2(A,p,q,T)



MERGE2(A, p,q,T)

1 np«—q—p+1 © length of the left array
2 ng«r—gq D length of the right array
3 create arrays L[1..n; + 1] and R[1...ngy + 1]
4 for i+ 1ton
5 L[i] — Alp+i—1]
6 for j «— 1tons
7 R[j] — Alg +Jj
8 L[ni+1] «— 0
9 Rng+1] «— o0

10 721

11 j«1

12 for k—ptor

13 if L[i] < R[j]

14 Alk] < LJi]

15 i—1i+1

16 else

17 Alk] < R[]

18 j—ji+1

— Is the algorithm correct?
— Running time
Same as MERGE-SORT except D(n) = ¢

This still results in:

T(n) =2T(n/2) + cn

— What are the memory/space costs of the two merge sort algo-
rithms?
Memory usage is different than time usage: we can reuse memory!

In general, we're interested in maximum memory usage, but may
also be interested in average memory usage while processing.

— How hard are the two merge sort versions to implement/debug?

e Bubble sort



BUBBLE-SORT(A)
1 sorted « false
2 while sorted = false
3 sorted + true
for i < 1 to length[A] —1
if Ali] > Ali + 1]
swap Ali] and A[i + 1]
sorted « false

N O Ot

These notes are adapted from material found in chapters 1 + 2 of [1].
References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.



