CS161 - Introduction

David Kauchak

- "For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan
- What is an algorithm?
- Examples
- sort a list of numbers
- find a route from one place to another (cars, packet routing, phone routing, ...)
- find the longest common substring between two strings
- add two numbers
- microchip wiring/design (VLSI)
- solving sudoku
- cryptography
- compression (file, audio, video)
- spell checking
- pagerank
- classify a web page
- ...
- What properties of algorithms are we interested in?
- does it terminate?
- is it correct, i.e. does it do what we think it's supposed to do?
- what are the computational costs?
- what are the memory/space costs?
- what happens to the above with different inputs?
- how difficult is it to implement and implement correctly?
- Why are we interested? Most of the algorithms/data structure we will discuss have been around for a while and are implemented. Why should we study them?
- For example, look at the java.util package
* Hashtable
* LinkedList
* Stack
* TreeSet
* Arrays.binarySearch
* Arrays.sort
- Know what's out there/possible/impossible
- Know the right algorithm to use
- Tools for analyzing new algorithms
- Tools for developing new algorithms
- interview questions? :)
* Describe the algorithm for a depth-first graph traversal.
* Write a function $\mathrm{f}(\mathrm{a}, \mathrm{b})$ which takes two character string arguments and returns a string containing only the characters found in both strings in the order of a. Write a version which is $\mathrm{O}\left(n^{2}\right)$ and one which is $\mathrm{O}(n)$.
* You're given an array containing both positive and negative integers and required to find the sub-array with the largest $\operatorname{sum}(\mathrm{O}(n)$ a la KBL). Write a routine in C for the above.
* Reverse a linked list
* Insert in a sorted list
* Write a function to find the depth of a binary tree
* ...
- Personal experience: Understanding and developing new algorithms has been one of the most useful tools/skills for me.
* Hierarchical clustering
* Perceptron learning algorithm
* Sparse vector manipulation

```
* Text indexing
* Word misspellings
* Feature grouping
* ..
```

- Pseodocode
- A way to discuss how an algorithm works that is language agnostic and without being encumbered with actual implementation details.
- Should give enough detail for a person to undersand, analyze and implement the algorithm.
- Conventions

Mystery1 (A)

$x \leftarrow-\infty$
for $i \leftarrow 1$ to length $[A]$ if $A[i]>x$ $x \leftarrow A[i]$
return x
Mystery2(A)

$$
\begin{aligned}
\text { for } i & \leftarrow 1 \text { to }\lfloor\operatorname{length}(A) / 2\rfloor \\
& \quad \operatorname{swap} A[i] \text { and } A[\operatorname{length}(A)-(i-1)]
\end{aligned}
$$

- Comments
* array indices start at 1 not 0
* we may use notation such as ∞, which, when translated to code, would be something like Integer.MAX_VALUE
* use shortcuts for simple function (e.g. swap) to make pseudocode simpler
* we'll use \leftarrow instead of $=$ to avoid ambiguity
* Indentation specifies scope
- Sorting

Input: An array of numbers A
Output: The array of numbers in sorted order, i.e. $A[i] \leq A[j] \forall i<j$ - cards

* sort cards: all cards in view
* sort cards: only view one card at a time
- Insertion sort

Insertion-Sort (A)

$$
\begin{aligned}
& \text { for } j \leftarrow 2 \text { to length }[A] \\
& \qquad \begin{array}{c}
\text { current } \leftarrow A[j] \\
\quad i \leftarrow j-1 \\
\text { while } i>0 \text { and } A[i]>\text { current } \\
A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1] \\
\leftarrow \text { current }
\end{array}
\end{aligned}
$$

- Does it terminate?
- Is the algorithm correct?

Loop invariant: A statement about the algorithm that is always true regardless of where we are in the algorithm
Insertion-Sort invariant: At the start of each iteration of the for loop of lines 1-7 the subarray $A[1 . . j-1]$ is the sorted version of the original elements of $A[1 . . j-1]$

To prove, need to show two things:

* Base case: invariant is true before the loop
* Inductive case: it is true after each iteration
upon termination of the loop, the invariant should help you show something useful about the algorithm.

Proof

- Running time: How long does it take? How many computational "steps" will be executed?

What is our computational model? Turing machine? We'll assume a random-access machine (RAM) model of computation.

Examine costs for each step
$T(n)=c_{1} n+c_{2}(n-1)+c_{3} \sum_{j=2}^{n} t_{j}+c_{4} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{5} \sum_{j=2}^{n}\left(t_{j}-\right.$ 1) $+c_{6}(n-1)$

* Best case: array is sorted $t_{j}=1$ $\sum_{j=2}^{n}=n$ - Linear
* Worst case: array is in reverse sorted order $t_{j}=j$ $\sum_{j=2}^{n}=n+n-1+n-2+\cdot+2=\frac{n(n+1)}{2}-1$ - Quadratic
* Average case: array is in random order The array up through j is sorted. How many entries on average will we have to analyze before in the sorted portion of the array to find the correct location for the current element? $t_{j}=j / 2$
$\sum_{j=2}^{n}=\frac{\frac{n(n+1)}{2}}{2}-1 / 2$ - Quadratic
* Can we do better? What about if we used binary search to find the correct position?
- Divide and Conquer
- Divide the problem into smaller subproblems
- Conquer the subproblems by solving the subproblems. Often this just involves waiting until the problem is small enough that it is trivial to solve.
- Combine the divided subproblems into a final solution.

```
\(\operatorname{Merge-Sort}(A)\)
    if length \([A]==1\)
    return A
    else
        \(q \leftarrow\lfloor\) length \([A] / 2\rfloor\)
        create arrays \(L[1 . . q]\) and \(R[q+1\).. length \([A]]\)
        copy \(A[1 . . q]\) to \(L\)
        copy \(A[q+1\).. length \([A]]\) to \(R\)
        \(L S \leftarrow \operatorname{Merge-Sort}(\mathrm{~L})\)
        \(R S \leftarrow \operatorname{Merge-Sort}(\mathrm{R})\)
        return Merge(LS, RS)
```

```
Merge(L,R)
```

```
create array B of length length \([L]+\) length \([R]\)
\(i \leftarrow 1\)
\(j \leftarrow 1\)
for \(k \leftarrow 1\) to length \([B]\)
    if \(j>\) length \([R]\) or \((i \leq l e n g t h[L]\) and \(L[i] \leq R[j])\)
        \(B[k] \leftarrow L[i]\)
        \(i \leftarrow i+1\)
    else
        \(B[k] \leftarrow R[j]\)
        \(j \leftarrow j+1\)
    return \(B\)
```

- Is the algorithm correct?

Merge invariant: At the end of each iteration of the for loop of lines $4-10$ the subarray $B[1 . . k]$ contains the smallest k elements from L and R in sorted order.
Proof?

- Running time

$$
T(n)= \begin{cases}c & \text { if } n \text { is small } \\ 2 T(n / 2)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

$D(n)$ Divide: copy the input array into two halves - linear, $\Theta(n)$ $C(n)$ Combine: merges the two sorted halves - linear, $\Theta(n)$

$$
T(n)= \begin{cases}c & \text { if } n \text { is small } \\ T(n / 2)+c n & \text { otherwise }\end{cases}
$$

Analyze the tree on pg. 35
$c n \log n+c n$

Merge-Sort2 $2(A, p, r)$

```
if \(p<r\)
\(q \leftarrow\lfloor(\mathrm{p}+\mathrm{r}) / 2\rfloor\)
Merge-Sort2 \((A, p, q)\)
Merge-Sort2 \(2(A, q+1, r)\)
    \(\operatorname{Merge2}(A, p, q, r)\)
```

```
\(\operatorname{Merge2}(A, p, q, r)\)
    \(n_{1} \leftarrow q-p+1 \quad \triangleright\) length of the left array
    \(n_{2} \leftarrow r-q \quad \triangleright\) length of the right array
    create arrays \(L\left[1 . . n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
    for \(i \leftarrow 1\) to \(n_{1}\)
    \(L[i] \leftarrow A[p+i-1]\)
    for \(j \leftarrow 1\) to \(n_{2}\)
        \(R[j] \leftarrow A[q+j]\)
    \(L\left[n_{1}+1\right] \leftarrow \infty\)
    \(R\left[n_{2}+1\right] \leftarrow \infty\)
    \(i \leftarrow 1\)
    \(j \leftarrow 1\)
    for \(k \leftarrow p\) to \(r\)
        if \(L[i] \leq R[j]\)
                \(A[k] \leftarrow L[i]\)
                \(i \leftarrow i+1\)
        else
        \(A[k] \leftarrow R[j]\)
        \(j \leftarrow j+1\)
```

- Is the algorithm correct?
- Running time

Same as Merge-Sort except $D(n)=c$

This still results in:

$$
T(n)=2 T(n / 2)+c n
$$

- What are the memory/space costs of the two merge sort algorithms?
Memory usage is different than time usage: we can reuse memory! In general, we're interested in maximum memory usage, but may also be interested in average memory usage while processing.
- How hard are the two merge sort versions to implement/debug?
- Bubble sort

```
Bubble-Sort(A)
sorted }\leftarrow\mathrm{ false
while sorted = false
        sorted }\leftarrow\mathrm{ true
        for }i\leftarrow1\mathrm{ to length[A]-1
            if }A[i]>A[i+1
                swap }A[i]\mathrm{ and }A[i+1
                sorted }\leftarrow\mathrm{ false
```

These notes are adapted from material found in chapters $1+2$ of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

