$\operatorname{CS161}$ - Introduction

David Kauchak

- "For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing."
 Francis Sullivan
- What is an algorithm?
- Examples
 - sort a list of numbers
 - find a route from one place to another (cars, packet routing, phone routing, ...)
 - find the longest common substring between two strings
 - add two numbers
 - microchip wiring/design (VLSI)
 - solving sudoku
 - cryptography
 - compression (file, audio, video)
 - spell checking
 - pagerank
 - classify a web page
 - ...
- What properties of algorithms are we interested in?
 - does it terminate?
 - is it correct, i.e. does it do what we think it's supposed to do?
 - what are the computational costs?
 - what are the memory/space costs?

- what happens to the above with different inputs?
- how difficult is it to implement and implement correctly?
- Why are we interested? Most of the algorithms/data structure we will discuss have been around for a while and are implemented. Why should we study them?
 - For example, look at the java.util package
 - * Hashtable
 - * LinkedList
 - * Stack
 - * TreeSet
 - * Arrays.binarySearch
 - * Arrays.sort
 - Know what's out there/possible/impossible
 - Know the right algorithm to use
 - Tools for analyzing new algorithms
 - Tools for developing new algorithms
 - interview questions? :)
 - * Describe the algorithm for a depth-first graph traversal.
 - * Write a function f(a, b) which takes two character string arguments and returns a string containing only the characters found in both strings in the order of a. Write a version which is $O(n^2)$ and one which is O(n).
 - * You're given an array containing both positive and negative integers and required to find the sub-array with the largest sum (O(n) a la KBL). Write a routine in C for the above.
 - * Reverse a linked list
 - * Insert in a sorted list
 - $\ast\,$ Write a function to find the depth of a binary tree
 - * ...
 - Personal experience: Understanding and developing new algorithms has been one of the most useful tools/skills for me.
 - * Hierarchical clustering
 - * Perceptron learning algorithm
 - * Sparse vector manipulation

- * Text indexing
- * Word misspellings
- * Feature grouping

* ...

- Pseodocode
 - A way to discuss how an algorithm works that is language agnostic and without being encumbered with actual implementation details.
 - Should give enough detail for a person to undersand, analyze and implement the algorithm.
 - Conventions

```
1 for i \leftarrow 1 to \lfloor length(A)/2 \rfloor

2 swap A[i] and A[length(A) - (i-1)]
```

- Comments
 - $\ast\,$ array indices start at 1 not 0
 - * we may use notation such as ∞ , which, when translated to code, would be something like Integer.MAX_VALUE
 - * use shortcuts for simple function (e.g. swap) to make pseudocode simpler
 - * we'll use \leftarrow instead of = to avoid ambiguity
 - * Indentation specifies scope
- Sorting

Input: An array of numbers AOutput: The array of numbers in sorted order, i.e. $A[i] \le A[j] \ \forall i < j$

- cards

- * sort cards: all cards in view
- $\ast\,$ sort cards: only view one card at a time
- Insertion sort

INSERTION-SORT(A)

1	for $j \leftarrow 2$ to $length[A]$
2	$current \leftarrow A[j]$
3	$i \leftarrow j-1$
4	while $i > 0$ and $A[i] > current$
5	$A[i+1] \leftarrow A[i]$
6	$i \leftarrow i-1$
7	$A[i+1] \leftarrow current$

- Does it terminate?

- Is the algorithm correct?

Loop invariant: A statement about the algorithm that is always true regardless of where we are in the algorithm

INSERTION-SORT invariant: At the start of each iteration of the **for** loop of lines 1-7 the subarray A[1..j-1] is the sorted version of the original elements of A[1..j-1]

To prove, need to show two things:

- * Base case: invariant is true before the loop
- * Inductive case: it is true after each iteration

upon termination of the loop, the invariant should help you show something useful about the algorithm.

Proof

 Running time: How long does it take? How many computational "steps" will be executed?

What is our computational model? Turing machine? We'll assume a random-access machine (RAM) model of computation.

Examine costs for each step

$$T(n) = c_1 n + c_2 (n-1) + c_3 \sum_{j=2}^n t_j + c_4 \sum_{j=2}^n (t_j - 1) + c_5 \sum_{j=2}^n (t_j - 1) + c_6 (n-1)$$

* Best case: array is sorted

$$t_j = 1$$

 $\sum_{i=2}^n = n$ - Linear

$$t_i = j$$

$$\sum_{j=2}^{n} = n + n - 1 + n - 2 + \dots + 2 = \frac{n(n+1)}{2} - 1 -$$
Quadratic

* Average case: array is in random order

The array up through j is sorted. How many entries on average will we have to analyze before in the sorted portion of the array to find the correct location for the current element? $t_j = j/2$

$$\sum_{i=2}^{n} = \frac{\frac{n(n+1)}{2}}{2} - 1/2$$
 - Quadratic

- * Can we do better? What about if we used binary search to find the correct position?
- Divide and Conquer
 - Divide the problem into smaller subproblems
 - Conquer the subproblems by solving the subproblems. Often this just involves waiting until the problem is small enough that it is trivial to solve.
 - *Combine* the divided subproblems into a final solution.

MERGE-SORT(A)

1	if $length[A] == 1$
2	return A
3	else
4	$q \leftarrow \lfloor length[A] / 2 \rfloor$
5	create arrays $L[1q]$ and $R[q + 1 length[A]]$
6	copy $A[1q]$ to L
7	copy $A[q+1 length[A]]$ to R
8	$LS \leftarrow \text{Merge-Sort}(L)$
9	$RS \leftarrow \text{Merge-Sort}(R)$
10	return Merge(LS, RS)

MERGE(L, R)1 create array B of length length[L] + length[R]2 $i \leftarrow 1$ 3 $j \leftarrow 1$ 4 for $k \leftarrow 1$ to length[B]if j > length[R] or $(i \leq length[L]$ and $L[i] \leq R[j])$ 5 $B[k] \gets L[i]$ 6 $i \leftarrow i+1$ 78 else $B[k] \leftarrow R[j]$ 9 10 $j \leftarrow j + 1$ return B 11

- Is the algorithm correct?

MERGE invariant: At the end of each iteration of the **for** loop of lines 4-10 the subarray B[1..k] contains the smallest k elements from L and R in sorted order.

Proof?

- Running time

$$T(n) = \begin{cases} c & \text{if } n \text{ is small} \\ 2T(n/2) + D(n) + C(n) & \text{otherwise} \end{cases}$$

D(n) Divide: copy the input array into two halves - linear, $\Theta(n)$ C(n) Combine: merges the two sorted halves - linear, $\Theta(n)$

$$T(n) = \begin{cases} c & \text{if } n \text{ is small} \\ T(n/2) + cn & \text{otherwise} \end{cases}$$

Analyze the tree on pg. 35 $cn \log n + cn$

MERGE-SORT2(A, p, r)

 $\begin{array}{lll} 1 & \text{if } p < r \\ 2 & q \leftarrow \lfloor (p+r)/2 \rfloor \\ 3 & \text{MERGE-SORT2}(A, p, q) \\ 4 & \text{MERGE-SORT2}(A, q+1, r) \\ 5 & \text{MERGE2}(A, p, q, r) \end{array}$

MERGE2(A, p, q, r) \triangleright length of the left array 1 $n_1 \leftarrow q - p + 1$ 2 $n_2 \leftarrow r - q$ \triangleright length of the right array 3 create arrays $L[1..n_1 + 1]$ and $R[1...n_2 + 1]$ 4 for $i \leftarrow 1$ to n_1 $L[i] \leftarrow A[p+i-1]$ 5for $j \leftarrow 1$ to n_2 6 $R[j] \leftarrow A[q+j]$ 78 $L[n_1+1] \leftarrow \infty$ 9 $R[n_2+1] \leftarrow \infty$ $10 \quad i \gets 1$ 11 $j \leftarrow 1$ 12for $k \leftarrow p$ to rif $L[i] \leq R[j]$ 13 $A[k] \leftarrow L[i]$ 14 $i \leftarrow i + 1$ 1516else $\begin{array}{l} A[k] \leftarrow R[j] \\ j \leftarrow j+1 \end{array}$ 1718

- Is the algorithm correct?

- Running time Same as MERGE-SORT except D(n) = c

This still results in:

T(n) = 2T(n/2) + cn

- What are the memory/space costs of the two merge sort algorithms?

Memory usage is different than time usage: we can reuse memory! In general, we're interested in maximum memory usage, but may also be interested in average memory usage while processing.

- How hard are the two merge sort versions to implement/debug?
- Bubble sort

These notes are adapted from material found in chapters 1 + 2 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.