CS161 - String Operations

David Kauchak

- Basic string operations

Let Σ be an alphabet, e.g. $\Sigma=(a, b, c, \ldots, z)$

A string is any member of Σ^{*}, i.e. any sequence of 0 or more characters of Σ

Given strings s_{1} of length n and s_{2} of length m, here are some string functions we might use:

- Equality - Is $s_{1}=s_{2}$ (can also consider case insensitive). $O(n)$ where n is the length of the shortest string.
- Concatenate (append) - Create string $s_{1} s_{2} . \Theta(n+m)$
- Substitute - Exchange all occurrences of a particular character with another character. For example Substitute('this is a string', i, x) $=$ 'thxs xs a strxng'. $\Theta(n)$
- Length - return the number of characters in the string. Length $\left(s_{1}\right)=$ $n-\Theta(1)$ or $\Theta(n)$ depending on how the string is stored.
- Prefix - Get the first j characters in the string. Prefix('this is a string', 5) $=$ 'this '. $\Theta(j)$
- Suffix - Get the last j characters in the string. SUFFIX('this is a string', 6$)=$ 'string'. $\Theta(j)$
- Substring - Get the characters between i and j inclusive. SUBSTRING('this is a string', 4,8$)=$'s is '. $\Theta(j-i)$
- Edit Distance (Levenshtein distance)

The edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}.

Insertion: $A B A C E D \rightarrow A B A C C E D$

Deletion: $A B A C E D \rightarrow A B A E D$

Substitution: $A B A C E D \rightarrow A B A D E D$

Some examples:
$-\operatorname{Edit}($ Kitten, Mitten $)=1$

- $\operatorname{Edit}(H a p p y, ~ H i l l y)=3$
- $\operatorname{Edit}($ Banana, Car) $=5$
- $\operatorname{Edit}($ Simple, Apple) $=3$

Edit distance is symmetric, that is:
$\operatorname{Edit}\left(s_{1}, s_{2}\right)=\operatorname{Edit}\left(s_{2}, s_{1}\right)$

Why?

Calculating the edit distance is similar to LCS.
$\operatorname{Edit}(X, Y)=\min \left\{\begin{array}{l}1+\operatorname{Edit}\left(X_{1 \ldots n}, Y_{1 \ldots m-1}\right)-\text { insertion } \\ 1+\operatorname{Edit}\left(X_{1 \ldots n-1}, Y_{1 \ldots m}\right)-\text { deletion } \\ \operatorname{DIFF}\left(x_{n}, y_{m}\right)+\operatorname{EdIT}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right)-\text { equal/substitution }\end{array}\right.$
where DIFF returns 1 if the characters are different and 0 if they are the same.

```
\(\operatorname{Edit}(X, Y)\)
    \(m \leftarrow\) length \([X]\)
    \(n \leftarrow\) length \([Y]\)
    for \(i \leftarrow 0\) to \(m\)
        \(d[i, 0] \leftarrow i\)
    for \(j \leftarrow 0\) to \(n\)
        \(d[0, j] \leftarrow j\)
    for \(i \leftarrow 1\) to \(m\)
    for \(j \leftarrow 1\) to \(n\)
        \(d[i, j]=\min (1+d[i-1, j]\),
                                    \(1+d[i, j-1]\),
                                    \(\left.\operatorname{DIFF}\left(x_{i}, y_{j}\right)+d[i-1, j-1]\right)\)
    return \(d[m, n]\)
```

- Is it correct?
- Runtime? $\Theta(n m)$

Variants:

- Only include insertions and deletions
- Include swaps, e.g. swapping two adjacent characters counts as one edit
- weight insertion, deletion and substitution operations differently
- weight specific insertions, deletions and substitutions differently
- Length normalized
- String Matching contains, grep, search, find ...

Given a string pattern P of length m and a string S of length n, find all the locations where P occurs in S.

Example

- Naive method

Naive-String-Matcher (S, P)

$$
n \leftarrow \text { length }[S]
$$

$$
m \leftarrow \operatorname{length}[P]
$$

$$
\text { for } s \leftarrow 0 \text { to } n-m
$$

$$
\text { if } S[1 \ldots m]=T[s+1 \ldots s+m]
$$

print "Pattern at s"

- Is it correct?
- Runtime?

How long does the test for equality take?

Best case: $O(1)$
Worst case: $O(m)$

What is the best case for the algorithm?
The first character of the pattern does not occur in the string.

$$
\Theta(n-m+1)
$$

What is the worst case?
The pattern occurs at every location, e.g.

$$
\begin{aligned}
& P=\text { aaaa } \\
& S=\text { aaaaaaaaaaaaaaaaaaa } \\
& O((n-m+1) m)
\end{aligned}
$$

- String matching with finite state automata (FSA)

A FSA is defined by 5 components

- Q is a the set of states
- q_{0} is the start state
$-A \subseteq Q$ is a set of accepting states where $|A|>0$
$-\Sigma$ is the input alphabet
$-\delta$ is the transition function from $Q \times \Sigma$ to Q

A finite state machine begins at state q_{0} and reads the characters of the input string one at a time. If the automaton is in state q and reads character a, then it transitions to state $\delta(q, a)$. If the FSA reaches an accepting state $q \in A$, then the FSA accepts the string read so far. A string that is not accepted is rejected by the FSA

Example

We define the suffix function, $\sigma(x, y)$ to be the longest suffix of x that is also a prefix of y, that is

$$
\sigma(x, y)=\max _{i}\left(x_{m-i+1 \ldots m}=y_{1 \ldots i}\right)
$$

For example
$-\sigma($ abcdab, ababcd $)=2$
$-\sigma($ daabac, abacac $)=4$
$-\sigma($ dabb, abacd $)=0$
$-\sigma($ daba, abacd $)=3$
Why do we care about this function?

Consider trying to find the pattern "ababaca" in the string "abababacaba".

Building a string matching automata

Given a pattern $p_{1 \ldots m}$

- The set of states Q is $0,1, \ldots, m$
- The start state $q_{0}=0$
- The set of accept states $A=\left(q_{m}\right)$
- The vocab Σ is all characters in the pattern plus an extra symbol for any character not in the pattern
- The transition function for $q \in Q$ and $a \in \Sigma$ is defined as:

$$
\delta(q, a)=\sigma\left(p_{1 \ldots q} a, P\right)
$$

For example, given $P=a b a b a c a$

state	a	b	c	P
0	1	0	0	a
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	c
6	7	0	0	a
7	1	2	0	

Given this finite automata, we then process the input string. Every time we reach state m, then we know that there is a match.

- Is it correct?
- Runtime

Creating the automata:
What is the best case? $\Omega(m|\Sigma|)$

Naive implementation (pg. 922 of $[1])-O\left(m^{3}|\Sigma|\right)$

Fast implementation $O(m|\Sigma|)$

Overall runtime:

Preprocessing: $O(m|\Sigma|)$
Matching: $\Theta(n)$

- Rabin-Karp algorithm

High-level idea: Given a pattern $p_{1 \ldots m}$, create a hash function T that hashes m characters, such that given a $T\left(s_{1 \ldots m}\right)$ we can efficiently calculate $T\left(s_{2 \ldots m+1}\right)$. We can then compare the hash of the pattern with the hash of each m character string for a match.

For simplicity, we'll assume $\Sigma=(0,1,2,3,4,5,6,7,8,9)$ (in general, we can use a base larger than 10 to suit our purposes). A string can then be viewed as a decimal number.

Given a pattern p, we can calulate this number using Horner's rule:

$$
d=p_{m}+10\left(p_{m-1}+10\left(p_{m-2}+\ldots+10\left(p_{2}+10 p_{1}\right)\right)\right)
$$

in time $\Theta(m)$

Given a string s, we would like to compute the decimal values at each location.

Example

We do this by first calculating it at the first position t_{1} as above. To calculate the remaining positions we do the following:

$$
t_{i+1}=10\left(t_{i}-10^{m-1} s_{i}\right)+s_{i+m+1}
$$

that is, we subtract out the higher order digit, shift everything up a digit and add in the lowest order digit.

What is the cost of this operation? If we precompute 10^{m-1} then it is $\Theta(1)$

To calculate all of the matches we compare d to each t_{i} from $i=1$ to $n-m$. If $d=t_{i}$ then it is a match.

- Is it correct?
- Runtime

Preprocessing: $\Theta(m)$
Matching: $\Theta(n-m+1)$
Is this right?
This assumes that we can calculate $d=t_{i}$ in $\Theta(1)$ time.

To get around this, we'll calculate our our functions modulo q so that the result fits in memory and we can calculate $d \bmod q=t_{i} \bmod q$ in constant time.

We define $d^{\prime}=d \bmod q$ and $t_{i}^{\prime}=t_{i} \bmod q$

We now use these values instead of d and t_{i} to check for equality.

The only challenge is spurious hits that is if $d^{\prime}=t_{i}^{\prime}$ does not imply that $d=t_{i}$. So, if we do get a hit, we must explicity check if the pattern is actually equal.

- Is it correct?
- Runtime

Preprocessing: $\Theta(m)$

Best case: $\Theta(n-m+1)$

Worse case: $\Theta(n-m+1) m$

Average case:
v is the number of valid hits

How many spurious hits? probabilty of a spurious hit: $1 / q$ $O(n / q)$ spurious hits

Preprocessing: $\Theta(m)$
Matching: $O(n-m+1)+O(m(v+n / q))$

- Summary

Algorithm	Preprocessing time	Matching time
Naive	0	$O((n-m+1) m)$
FSA	$\Theta(m\|\Sigma\|)$	$\Theta(n)$
Rabin-Karp	$\Theta(m)$	$O((n-m+1) m)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$

(adapted from 32.2 pg. 907 from [1])
These notes are adapted from material found in chapters 32 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

