(CS161 - String Operations

David Kauchak

e Basic string operations

Let ¥ be an alphabet, e.g. ¥ = (a,b,c, ..., 2)

A string is any member of ¥*, i.e. any sequence of 0 or more characters
of ¥

Given strings s; of length n and sy of length m, here are some string
functions we might use:

— Equality - Is s; = s2 (can also consider case insensitive). O(n)
where n is the length of the shortest string.

— Concatenate (append) - Create string s;sa2. ©(n +m)

— Substitute - Exchange all occurrences of a particular character
with another character. For example SUBSTITUTE('this is a string’,i,x) =
'thxs xs a strxng’. ©(n)

— Length - return the number of characters in the string. LENGTH(s1) =
n - O(1) or ©(n) depending on how the string is stored.

— Prefix - Get the first j characters in the string. PREFIX(’this is a string’,5) =
"this . ©(j)

— Suffix - Get the last j characters in the string. SUFFIX(’this is a string’, 6) =
'string’. ©(j)

— Substring - Get the characters between ¢ and j inclusive.
SUBSTRING(’this is a string’,4,8) = s is ". O(j — 1)

e Edit Distance (Levenshtein distance)

The edit distance between two strings is the minimum number of in-
sertions, deletions and substitutions required to transform string s;
into string ss.

Insertion: ABACED — ABACCED
Deletion: ABACED — ABAED
Substitution: ABACED — ABADED

Some examples:

— Eprr(Kitten, Mitten) = 1
(Happy, Hilly) = 3

(

(

Banana, Car) = 5
— EprIT(Simple, Apple) = 3

— EpIiT

— EpIiT

Edit distance is symmetric, that is:
EDIT(s1, 52) = EDIT(s2, 51)

Why?

Calculating the edit distance is similar to LCS.

1+ Epit(X; p, Y1 m—1) - insertion
EpIT(X,Y) =min{ 1+ EDIT(X1. -1, Y1..m) - deletion
DIFF(Zp, Ym) + EDIT(X1 . -1, Y1, .m—1) - equal/substitution

where DIFF returns 1 if the characters are different and 0 if they are
the same.

EpIT(X,Y)

1 m « length[X]

2 n <« lengthlY]

3 fori—0tom

4 d[i,0] <1

5 for j«—0ton

6 d[0,j] —j

7 fori—1tom

8 for j— 1ton

9 dfi, j] = min(1 +d[i — 1, 7],

DIFF(x;,y;) +d[i — 1,7 — 1])
10 return djm,n]

— Is it correct?

— Runtime?

©(nm)

Variants:

Only include insertions and deletions

Include swaps, e.g. swapping two adjacent characters counts as
one edit

— weight insertion, deletion and substitution operations differently

— weight specific insertions, deletions and substitutions differently

Length normalized
e String Matching

contains, grep, search, find ...

Given a string pattern P of length m and a string S of length n, find
all the locations where P occurs in S.

Example

e Naive method

NAIVE-STRING-MATCHER(S, P)
n « length|S]
m « length[P]
for s— 0ton—m
if S[1..m]=T[s+1...s +m]
print “Pattern at s”

U W N =

— Is it correct?
— Runtime?
How long does the test for equality take?

Best case: O(1)
Worst case: O(m)

What is the best case for the algorithm?

The first character of the pattern does not occur in the string.
On—m+1)

What is the worst case?

The pattern occurs at every location, e.g.

P = aaaa
S = aaaaaaaaaaaaaaaaaa

O((n —m+1)m)

e String matching with finite state automata (FSA)
A FSA is defined by 5 components

@ is a the set of states

— qo is the start state

— A CQ is a set of accepting states where |A| > 0
— X is the input alphabet

¢ is the transition function from @ x X to)

A finite state machine begins at state gy and reads the characters of
the input string one at a time. If the automaton is in state ¢ and reads
character a, then it transitions to state d(q,a). If the FSA reaches an
accepting state ¢ € A, then the FSA accepts the string read so far. A
string that is not accepted is rejected by the FSA

Example

We define the suffiz function, o(x,y) to be the longest suffix of x that
is also a prefix of y, that is

o(z,y) = mazi(Tm—i+1..m = Y1..1)
For example
— o(abcdab, ababed) = 2
(daabac, abacac) = 4
(dabb, abacd) = 0
— o(daba, abacd) = 3

— 0

— 0

Why do we care about this function?

Consider trying to find the pattern “ababaca” in the string “abababa-
caba”.

Building a string matching automata

Given a pattern pi1._ .,

The set of states QQ is 0,1,...,m
— The start state ¢ = 0

The set of accept states A = (¢,)

— The vocab ¥ is all characters in the pattern plus an extra symbol
for any character not in the pattern

— The transition function for ¢ € @ and a € X is defined as:
6(¢,a) = o(p1...qa, P)

For example, given P = ababaca

state |a|b|c | P
0 1{0|0]| a
1 1{2]0]|Db
2 3/0(0] a
3 1{4]0|Db
4 510101 a
5 11416 c
6 710101 a
7 11210

Given this finite automata, we then process the input string. Every
time we reach state m, then we know that there is a match.

— Is it correct?

— Runtime

Creating the automata:
What is the best case? Q(m|X|)

Naive implementation (pg. 922 of [1]) - O(m3|3|)
Fast implementation O(m/|%|)
Overall runtime:

Preprocessing: O(m|X|)
Matching: ©(n)

e Rabin-Karp algorithm

High-level idea: Given a pattern p;._,,, create a hash function 7" that
hashes m characters, such that given a T'(s1._,,) we can efficiently cal-
culate T'(S2..m+1)- We can then compare the hash of the pattern with
the hash of each m character string for a match.

For simplicity, we’ll assume ¥ = (0,1,2,3,4,5,6,7,8,9) (in general,
we can use a base larger than 10 to suit our purposes). A string can
then be viewed as a decimal number.

Given a pattern p, we can calulate this number using Horner’s rule:
d = pm + 10(pm-1 + 10(pm—2 + ... +10(p2 + 10p1)))
in time ©(m)

Given a string s, we would like to compute the decimal values at each
location.

Example

We do this by first calculating it at the first position ¢; as above. To
calculate the remaining positions we do the following:

tit1 = 10(ti — 10m_18i) + Sitm+1

that is, we subtract out the higher order digit, shift everything up a
digit and add in the lowest order digit.

What is the cost of this operation? If we precompute 10"~ ! then it is
o(1)

To calculate all of the matches we compare d to each t¢; from i =1 to
n —m. If d = t; then it is a match.

— Is it correct?

— Runtime
Preprocessing: ©(m)
Matching: ©(n —m + 1)
Is this right?

This assumes that we can calculate d = ¢; in ©(1) time.

To get around this, we’ll calculate our our functions modulo ¢ so that
the result fits in memory and we can calculate dmod ¢ = ¢;mod ¢ in
constant time.

We define d’ = dmod ¢ and t; = t;mod ¢
We now use these values instead of d and ¢; to check for equality.

The only challenge is spurious hits that is if d’ = ¢, does not imply
that d = t;. So, if we do get a hit, we must explicity check if the
pattern is actually equal.

— Is it correct?
— Runtime

Preprocessing: ©(m)
Best case: O(n —m+1)
Worse case: O(n —m + 1)m

Average case:
v is the number of valid hits

How many spurious hits? probabilty of a spurious hit: 1/q
O(n/q) spurious hits

Preprocessing: ©(m)
Matching: O(n —m + 1) + O(m(v + n/q))

e Summary

Algorithm Preprocessing time =~ Matching time
Naive 0 O((n—m+1)m)
FSA O(m|X)) O(n)
Rabin-Karp O(m) O((n—m+1)m)
Knuth-Morris-Pratt O(m) O(n)

(adapted from 32.2 pg. 907 from [1])

These notes are adapted from material found in chapters 32 of [1].

References
[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

