CS161 - String Operations

David Kauchak

• Basic string operations

Let Σ be an alphabet, e.g. $\Sigma = (a, b, c, ..., z)$

A string is any member of $\Sigma^*,$ i.e. any sequence of 0 or more characters of Σ

Given strings s_1 of length n and s_2 of length m, here are some string functions we might use:

- Equality Is $s_1 = s_2$ (can also consider case insensitive). O(n) where n is the length of the shortest string.
- Concatenate (append) Create string s_1s_2 . $\Theta(n+m)$
- Substitute Exchange all occurrences of a particular character with another character. For example SUBSTITUTE('this is a string', i, x) = 'thxs xs a strxng'. $\Theta(n)$
- Length return the number of characters in the string. LENGTH $(s_1) = n \Theta(1)$ or $\Theta(n)$ depending on how the string is stored.
- Prefix Get the first j characters in the string. PREFIX('this is a string', 5) = 'this '. $\Theta(j)$
- Suffix Get the last j characters in the string. SUFFIX('this is a string', 6) = 'string'. $\Theta(j)$
- Substring Get the characters between i and j inclusive. SUBSTRING('this is a string', 4, 8) = 's is '. $\Theta(j - i)$
- Edit Distance (Levenshtein distance)

The edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_1 into string s_2 . Insertion: $ABACED \rightarrow ABACCED$

Deletion: $ABACED \rightarrow ABAED$

Substitution: $ABACED \rightarrow ABADED$

Some examples:

- EDIT(Kitten, Mitten) = 1
- EDIT(Happy, Hilly) = 3
- EDIT(Banana, Car) = 5
- EDIT(Simple, Apple) = 3

Edit distance is symmetric, that is: EDIT $(s_1, s_2) = EDIT(s_2, s_1)$

Why?

Calculating the edit distance is similar to LCS.

$$\operatorname{EDIT}(X,Y) = \min \begin{cases} 1 + \operatorname{EDIT}(X_{1\dots n}, Y_{1\dots m-1}) \text{ - insertion} \\ 1 + \operatorname{EDIT}(X_{1\dots n-1}, Y_{1\dots m}) \text{ - deletion} \\ \operatorname{DIFF}(x_n, y_m) + \operatorname{EDIT}(X_{1\dots n-1}, Y_{1\dots m-1}) \text{ - equal/substitution} \end{cases}$$

where DIFF returns 1 if the characters are different and 0 if they are the same.

EDIT(X, Y)1 $m \leftarrow length[X]$ $\mathbf{2}$ $n \leftarrow length[Y]$ for $i \leftarrow 0$ to m3 4 $d[i, 0] \leftarrow i$ 5for $j \leftarrow 0$ to n $d[0,j] \leftarrow j$ 6 7for $i \leftarrow 1$ to m8 for $j \leftarrow 1$ to nd[i, j] = min(1 + d[i - 1, j]),9 1 + d[i, j - 1], $DIFF(x_i, y_i) + d[i - 1, j - 1])$

- 10 return d[m, n]
 - Is it correct?
 - Runtime?
 - $\Theta(nm)$

Variants:

- Only include insertions and deletions
- Include swaps, e.g. swapping two adjacent characters counts as one edit
- weight insertion, deletion and substitution operations differently
- weight specific insertions, deletions and substitutions differently
- Length normalized
- String Matching

contains, grep, search, find ...

Given a string pattern P of length m and a string S of length n, find all the locations where P occurs in S.

Example

• Naive method

NAIVE-STRING-MATCHER(S, P)

 $\begin{array}{lll} 1 & n \leftarrow length[S] \\ 2 & m \leftarrow length[P] \\ 3 & \textbf{for } s \leftarrow 0 \ \textbf{to } n-m \\ 4 & \qquad \textbf{if } S[1...m] = T[s+1...s+m] \\ 5 & \qquad print "Pattern at s" \end{array}$

- Is it correct?
- Runtime?
 How long does the test for equality take?

Best case: O(1)Worst case: O(m)

What is the best case for the algorithm?

The first character of the pattern does not occur in the string. $\Theta(n-m+1)$

What is the worst case? The pattern occurs at every location, e.g.

O((n-m+1)m)

- String matching with finite state automata (FSA)
 - A FSA is defined by 5 components
 - -Q is a the set of states
 - $-q_0$ is the start state
 - $-A \subseteq Q$ is a set of accepting states where |A| > 0
 - $-\Sigma$ is the input alphabet
 - δ is the transition function from $Q\ge \Sigma$ to Q

A finite state machine begins at state q_0 and reads the characters of the input string one at a time. If the automaton is in state q and reads character a, then it transitions to state $\delta(q, a)$. If the FSA reaches an accepting state $q \in A$, then the FSA accepts the string read so far. A string that is not accepted is rejected by the FSA

Example

We define the suffix function, $\sigma(x, y)$ to be the longest suffix of x that is also a prefix of y, that is

$$\sigma(x,y) = \max_i (x_{m-i+1\dots m} = y_{1\dots i})$$

For example

 $-\sigma(abcdab, ababcd) = 2$ $-\sigma(daabac, abacac) = 4$ $-\sigma(dabb, abacd) = 0$ $-\sigma(daba, abacd) = 3$

Why do we care about this function?

Consider trying to find the pattern "ababaca" in the string "abababa-caba".

Building a string matching automata

Given a pattern $p_{1...m}$

- The set of states Q is 0, 1, ..., m
- The start state $q_0 = 0$
- The set of accept states $A = (q_m)$
- The vocab Σ is all characters in the pattern plus an extra symbol for any character not in the pattern
- The transition function for $q \in Q$ and $a \in \Sigma$ is defined as: $\delta(q, a) = \sigma(p_{1...q}a, P)$

For example, given P = ababaca

state	a	b	с	Р
0	1	0	0	a
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	с
6	7	0	0	a
7	1	2	0	

Given this finite automata, we then process the input string. Every time we reach state m, then we know that there is a match.

- Is it correct?

– Runtime

Creating the automata: What is the best case? $\Omega(m|\Sigma|)$

Naive implementation (pg. 922 of [1]) - $O(m^3|\Sigma|)$

Fast implementation $O(m|\Sigma|)$

Overall runtime:

Preprocessing: $O(m|\Sigma|)$ Matching: $\Theta(n)$

• Rabin-Karp algorithm

High-level idea: Given a pattern $p_{1...m}$, create a hash function T that hashes m characters, such that given a $T(s_{1...m})$ we can efficiently calculate $T(s_{2...m+1})$. We can then compare the hash of the pattern with the hash of each m character string for a match.

For simplicity, we'll assume $\Sigma = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$ (in general, we can use a base larger than 10 to suit our purposes). A string can then be viewed as a decimal number.

Given a pattern p, we can calulate this number using Horner's rule:

$$d = p_m + 10(p_{m-1} + 10(p_{m-2} + \dots + 10(p_2 + 10p_1)))$$

in time $\Theta(m)$

Given a string s, we would like to compute the decimal values at each location.

Example

We do this by first calculating it at the first position t_1 as above. To calculate the remaining positions we do the following:

$$t_{i+1} = 10(t_i - 10^{m-1}s_i) + s_{i+m+1}$$

that is, we subtract out the higher order digit, shift everything up a digit and add in the lowest order digit.

What is the cost of this operation? If we precompute 10^{m-1} then it is $\Theta(1)$

To calculate all of the matches we compare d to each t_i from i = 1 to n - m. If $d = t_i$ then it is a match.

- Is it correct?
- Runtime Preprocessing: $\Theta(m)$ Matching: $\Theta(n - m + 1)$ Is this right?

This assumes that we can calculate $d = t_i$ in $\Theta(1)$ time.

To get around this, we'll calculate our our functions modulo q so that the result fits in memory and we can calculate $d \mod q = t_i \mod q$ in constant time. We define $d' = d \mod q$ and $t'_i = t_i \mod q$

We now use these values instead of d and t_i to check for equality.

The only challenge is *spurious hits* that is if $d' = t'_i$ does not imply that $d = t_i$. So, if we do get a hit, we must explicitly check if the pattern is actually equal.

- Is it correct?
- Runtime

Preprocessing: $\Theta(m)$

Best case: $\Theta(n-m+1)$

Worse case: $\Theta(n-m+1)m$

Average case: v is the number of valid hits

How many spurious hits? probability of a spurious hit: 1/qO(n/q) spurious hits

Preprocessing: $\Theta(m)$ Matching: O(n - m + 1) + O(m(v + n/q))

• Summary

Algorithm	Preprocessing time	Matching time		
Naive	0	O((n-m+1)m)		
FSA	$\Theta(m \Sigma)$	$\Theta(n)$		
Rabin-Karp	$\Theta(m)$	O((n-m+1)m)		
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$		
(adapted from 32.2 pg. 907 from $[1]$)				

These notes are adapted from material found in chapters 32 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.