
CS161 - String Operations

David Kauchak

• Basic string operations

Let Σ be an alphabet, e.g. Σ = (a, b, c, ..., z)

A string is any member of Σ∗, i.e. any sequence of 0 or more characters
of Σ

Given strings s1 of length n and s2 of length m, here are some string
functions we might use:

– Equality - Is s1 = s2 (can also consider case insensitive). O(n)
where n is the length of the shortest string.

– Concatenate (append) - Create string s1s2. Θ(n + m)

– Substitute - Exchange all occurrences of a particular character
with another character. For example Substitute(’this is a string’, i, x) =
’thxs xs a strxng’. Θ(n)

– Length - return the number of characters in the string. Length(s1) =
n - Θ(1) or Θ(n) depending on how the string is stored.

– Prefix - Get the first j characters in the string. prefix(’this is a string’, 5) =
’this ’. Θ(j)

– Suffix - Get the last j characters in the string. suffix(’this is a string’, 6) =
’string’. Θ(j)

– Substring - Get the characters between i and j inclusive.
substring(’this is a string’, 4, 8) = ’s is ’. Θ(j − i)

• Edit Distance (Levenshtein distance)

The edit distance between two strings is the minimum number of in-
sertions, deletions and substitutions required to transform string s1

into string s2.

1

Insertion: ABACED → ABACCED

Deletion: ABACED → ABAED

Substitution: ABACED→ ABADED

Some examples:

– Edit(Kitten, Mitten) = 1

– Edit(Happy, Hilly) = 3

– Edit(Banana, Car) = 5

– Edit(Simple, Apple) = 3

Edit distance is symmetric, that is:
Edit(s1, s2) = Edit(s2, s1)

Why?

Calculating the edit distance is similar to LCS.

Edit(X,Y) = min

1 + Edit(X1...n, Y1...m−1) - insertion
1 + Edit(X1...n−1, Y1...m) - deletion
diff(xn, ym) + Edit(X1...n−1, Y1...m−1) - equal/substitution

where diff returns 1 if the characters are different and 0 if they are
the same.

2

Edit(X,Y)

1 m← length[X]
2 n← length[Y]
3 for i← 0 to m
4 d[i, 0]← i
5 for j ← 0 to n
6 d[0, j] ← j
7 for i← 1 to m
8 for j ← 1 to n
9 d[i, j] = min(1 + d[i− 1, j],

1 + d[i, j − 1],
diff(xi, yj) + d[i− 1, j − 1])

10 return d[m,n]

– Is it correct?

– Runtime?

Θ(nm)

Variants:

– Only include insertions and deletions

– Include swaps, e.g. swapping two adjacent characters counts as
one edit

– weight insertion, deletion and substitution operations differently

– weight specific insertions, deletions and substitutions differently

– Length normalized

• String Matching

contains, grep, search, find ...

Given a string pattern P of length m and a string S of length n, find
all the locations where P occurs in S.

Example

• Naive method

3

Naive-String-Matcher(S,P)

1 n← length[S]
2 m← length[P]
3 for s← 0 to n−m
4 if S[1...m] = T [s + 1...s + m]
5 print “Pattern at s”

– Is it correct?

– Runtime?

How long does the test for equality take?

Best case: O(1)

Worst case: O(m)

What is the best case for the algorithm?

The first character of the pattern does not occur in the string.

Θ(n−m + 1)

What is the worst case?

The pattern occurs at every location, e.g.

P = aaaa
S = aaaaaaaaaaaaaaaaaa

O((n−m + 1)m)

• String matching with finite state automata (FSA)

A FSA is defined by 5 components

– Q is a the set of states

– q0 is the start state

– A ⊆ Q is a set of accepting states where |A| > 0

– Σ is the input alphabet

– δ is the transition function from Q x Σ to Q

4

A finite state machine begins at state q0 and reads the characters of
the input string one at a time. If the automaton is in state q and reads
character a, then it transitions to state δ(q, a). If the FSA reaches an
accepting state q ∈ A, then the FSA accepts the string read so far. A
string that is not accepted is rejected by the FSA

Example

We define the suffix function, σ(x, y) to be the longest suffix of x that
is also a prefix of y, that is

σ(x, y) = maxi(xm−i+1...m = y1...i)

For example

– σ(abcdab, ababcd) = 2

– σ(daabac, abacac) = 4

– σ(dabb, abacd) = 0

– σ(daba, abacd) = 3

Why do we care about this function?

Consider trying to find the pattern “ababaca” in the string “abababa-
caba”.

Building a string matching automata

Given a pattern p1...m

– The set of states Q is 0, 1, ...,m

– The start state q0 = 0

– The set of accept states A = (qm)

– The vocab Σ is all characters in the pattern plus an extra symbol
for any character not in the pattern

– The transition function for q ∈ Q and a ∈ Σ is defined as:

δ(q, a) = σ(p1...qa, P)

5

For example, given P = ababaca

state a b c P

0 1 0 0 a
1 1 2 0 b
2 3 0 0 a
3 1 4 0 b
4 5 0 0 a
5 1 4 6 c
6 7 0 0 a
7 1 2 0

Given this finite automata, we then process the input string. Every
time we reach state m, then we know that there is a match.

– Is it correct?

– Runtime

Creating the automata:
What is the best case? Ω(m|Σ|)

Naive implementation (pg. 922 of [1]) - O(m3|Σ|)

Fast implementation O(m|Σ|)

Overall runtime:

Preprocessing: O(m|Σ|)
Matching: Θ(n)

• Rabin-Karp algorithm

High-level idea: Given a pattern p1...m, create a hash function T that
hashes m characters, such that given a T (s1...m) we can efficiently cal-
culate T (s2...m+1). We can then compare the hash of the pattern with
the hash of each m character string for a match.

For simplicity, we’ll assume Σ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) (in general,
we can use a base larger than 10 to suit our purposes). A string can
then be viewed as a decimal number.

6

Given a pattern p, we can calulate this number using Horner’s rule:

d = pm + 10(pm−1 + 10(pm−2 + ... + 10(p2 + 10p1)))

in time Θ(m)

Given a string s, we would like to compute the decimal values at each
location.

Example

We do this by first calculating it at the first position t1 as above. To
calculate the remaining positions we do the following:

ti+1 = 10(ti − 10m−1si) + si+m+1

that is, we subtract out the higher order digit, shift everything up a
digit and add in the lowest order digit.

What is the cost of this operation? If we precompute 10m−1 then it is
Θ(1)

To calculate all of the matches we compare d to each ti from i = 1 to
n−m. If d = ti then it is a match.

– Is it correct?

– Runtime

Preprocessing: Θ(m)
Matching: Θ(n−m + 1)

Is this right?

This assumes that we can calculate d = ti in Θ(1) time.

To get around this, we’ll calculate our our functions modulo q so that
the result fits in memory and we can calculate dmod q = timod q in
constant time.

7

We define d′ = dmod q and t′i = timod q

We now use these values instead of d and ti to check for equality.

The only challenge is spurious hits that is if d′ = t′i does not imply
that d = ti. So, if we do get a hit, we must explicity check if the
pattern is actually equal.

– Is it correct?

– Runtime

Preprocessing: Θ(m)

Best case: Θ(n−m + 1)

Worse case: Θ(n−m + 1)m

Average case:
v is the number of valid hits

How many spurious hits? probabilty of a spurious hit: 1/q

O(n/q) spurious hits

Preprocessing: Θ(m)
Matching: O(n−m + 1) + O(m(v + n/q))

• Summary

Algorithm Preprocessing time Matching time

Naive 0 O((n−m + 1)m)
FSA Θ(m|Σ|) Θ(n)
Rabin-Karp Θ(m) O((n−m + 1)m)
Knuth-Morris-Pratt Θ(m) Θ(n)

(adapted from 32.2 pg. 907 from [1])

These notes are adapted from material found in chapters 32 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

8

