
CS161 - Dynamic Programming

David Kauchak

• Dynamic programming is a method for solving problems where the
optimal solution can be defined in terms of optimal solutions to sub-
problems.

• Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

What is the nth Fibonacci number?

F (n) = F (n− 1) + F (n− 2)

The solution to the answer for n is defined with respect to the solution
for n− 1 and n− 2. Top-down approach:

Fibonacci(n)

1 if n = 1 or n = 2
2 return 1
3 else

4 return Fibonacci(n− 1) + Fibonacci(n− 2)

– Is it correct?

– Runtime? O(2n)

– Memory?

Each call uses Θ(1) space. However, because we must recurse
down to n = 1 and we keep track of this on the stack, we will
still use Θ(n) space.

Can we do any better?

1



Let’s look at the call sequences:

Fibonacci(n)

Fibonacci(n− 1)

Fibonacci(n− 2)

Fibonacci(n− 3)

Fibonacci(n− 4)

Fibonacci(n− 3)

Fibonacci(n− 4)

Fibonacci(n− 5)

Fibonacci(n− 2)

Fibonacci(n− 3)

Fibonacci(n− 4)

Fibonacci(n− 5)

Fibonacci(n− 4)

Fibonacci(n− 5)

Fibonacci(n− 6)

Many of calls are redundant, since we already know the answer. Two
main ideas for dynamic programming:

1. Identify a solution to the problem with respect to solutions of
supbroblems

2. Bottom-up: Start with solutions to the smallest subproblems and
build solutions to larger problems

Fibonacci-DP(n)

1 fib[1]← 1
2 fib[2]← 1
3 for i← 3 to n

4 fib[i]← fib[i− 1] + fib[i− 2]
5 return fib[n]

– Is it correct?

2



– Runtime? - O(n)

– Memory - O(n)

• Binary search trees

How many unique binary search trees can be created using the num-
bers 1 through n?

Step 1: What is the subproblem?

Consider each of the 1 to n numbers as the root of the tree. For each
configuration, how many possibilities are there? If we sum up all of
these possibilities then we’ll have our answer.

Let’s look at a simple example. Take n = 10 and consider 4 as the
root. How many binary search trees can be created?

On the left, will be the numbers (1, 2, 3) and on the right (5, 6, 7, 8, 9, 10).
Let NL be the number of possible trees in the left tree and NR the
number of possible trees in the right tree, these could be calculated
with calls to our function with values 3 and 6 respectively. Given NL

and NR how many trees have 4 as the root?

NL ∗NR

every combination of tree in the left child with every combination on
the right child.

We can generalize this and sum over all roots

BST-Count(n)

1 if n = 0
2 return 1
3 else

4 sum = 0
5 for i← 1 to n

6 sum← sum + BST-Count(i− 1) ∗BST-Count(n− i)
7 return sum

3



– Is it correct?

Tries all roots 1 to n and sums up the values.

– Runtime?

Step 2: Generate solution from the bottom-up

As with Fibonacci we can start at the bottom and work our way up

BST-Count-DP(n)

1 c[0] = 1
2 c[1] = 1
3 for k ← 2 to n

4 c[k]← 0
5 for i← 1 to k

6 c[k]← c[k] + c[i− 1] ∗ c[k − i]
7 return c[n]

– Is it correct?

– Runtime?

O(n2)

• Longest common sequence

Given a sequence X = x1, x2, x3, ..., xn a subsequence is defined by a
set of increasing indices (i1, i2, ..., ik) where 1 ≤ i1 < i2 < .. < ik ≤ n

which define a subset of the sequence X, xi1, xi2 , xi3 , ..., xk.

For example, given X = ABACDABAB, the following are all subse-
quences:

ABA

ADB

BCDB

ABAABAB

Given two sequences X and Y a common subsequence is a subsequence
that occurs both in X and Y .

4



Given two sequences X = x1, x2, ..., xn and Y = y1, y2, .., ym, what is
the length of the longest common subsequence?

Step 1: Define the problem with respect to subproblems

LCS(X,Y ) =











0 if n = 0 or m = 0
1 + LCS(X1...n−1, Y1...m−1) if xn = ym

max(LCS(X1...n−1, Y ), LCS(X,Y1...m−1) otherwise

The optimal LCS falls into one of two cases. If the last characters are
the same, then the last character is part of the LCS and the entire
LCS is that character plus the LCS of the remaining characters of the
two sequences. If the last characters are not the same, then the LCS is
either the LCS of X with the last character of Y removed or the LCS
of Y with the last character of X removed.

Proof?

Step 2: Build the solution from the bottom-up

LCS-Length(X,Y )

1 m← length[X]
2 n← length[Y ]
3 c[0, 0] ← 0
4 for i← 1 to m

5 c[i, 0]← 0
6 for j ← 1 to n

7 c[0, j] ← 0
8 for i← 1 to m

9 for j ← 1 to n

10 if xi = yi

11 c[i, j] ← 1 + c[i− 1, j − 1]
12 elseif c[i − 1, j] > c[i, j − 1]
13 c[i, j] ← c[i− 1, j]
14 else

15 c[i, j] ← c[i, j − 1]
16 return c[m,n]

5



An example X = ABCBDAB and Y = BDCABA

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0
1 A 0 0 0 0 1 1 1
2 B 0 1 1 1 1 2 2
3 C 0 1 1 2 2 2 2
4 B 0 1 1 2 2 3 3
5 D 0 1 2 2 2 3 3
6 A 0 1 2 2 3 3 4
7 B 0 1 2 2 3 4 4

(adapted from Figure 15.6, pg. 354 of [1])

– Is it correct?

– Runtime - We fill in an m by n matrix where each entry takes
Θ(1) time - Θ(mn)

• Keeping track of the solution

So far, we have only asked the question of how many, but we may
also want to know what the actual solution is. Generally, this means
keeping track each decision that was made to fill in a particular entry.

In the LCS problem, this is one of three options. Then, given the final
solution, we can trace back the actual solution.

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0
1 A 0 0u 0u 0u 1d 1l 1d
2 B 0 1d 1l 1l 1u 2d 2l
3 C 0 1u 1u 2d 2l 2u 2u
4 B 0 1d 1u 2u 2u 3d 3l
5 D 0 1u 2d 2u 2u 3u 3u
6 A 0 1u 2u 2u 3d 3u 4d
7 B 0 1d 2u 2u 3u 4d 4u

(adapted from Figure 15.6, pg. 354 of [1])

• Longest increasing subsequence

6



LIS(X)

1 n← length(X)
2 create array lis with n entries
3 for i← n to 1
4 max← 1
5 for j ← i + 1 to n

6 if X[j] > X[i]
7 if 1 + lis[j] > max

8 max← 1 + lis[j]
9 lis[i]← max

10 max← 0
11 for i← 1 to n

12 if lis[i] > max

13 max← lis[i]
14 return max

• Memoization

Fibonacci-Memoized(n)

1 fib[1]← 1
2 fib[2]← 1
3 for i← 3 to n

4 fib[i]←∞
5 return Fib-Lookup(n)

Fib-Lookup(n)

1 if fib[n] <∞

2 return fib[n]
3 x← Fib-Lookup(n− 1) + Fib-Lookup(n− 2)
4 if x < fib[n]
5 fib[n]← x

6 return fib[n]

• Other dynamic programming problems

– 0-1 knapsack problem

– matrix multiplication bracketing

– edit distance between two sequence (LCS with substitution)

7



– longest increasing subsequence

– ...

These notes are adapted from material found in chapter 15 of [1].

References

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.

8


