Homework 5
Odd numbered problem solutions
csl6l
Summer 2009

Problem 1 (10 points):
Algorithm: First we sort the set {x,x,,...x,} to get a set of sorted real numbers S={y1,y,...yn}

Beginning with y,, cover the set with the interval K; = [y,,y:+1], remove any points in S that are
covered by K;. Now suppose that y;is the smallest real number in S that is not covered by K;, add in
the interval K, = [y;,yi+1] and remove all points covered by K,. Repeat this process until all the points
are covered. We end up with a set T of intervals that cover S.

Proof of Correctness:

Suppose we are given another set of unit intervals T’ that covers S, we claim that T’ has at least as
many intervals as T.

For each interval K;in T, we pick out the left endpoint of K;, which we call z;, note that by the way
we defined our intervals, Z = {z;| i=1to i=|T|} is a subset of S.

Now again by the way we defined the intervals in T, each z; is distance > 1 from any other element in
Z. Because Z is a subset of S, in order to cover S, T" must cover Z.

Now since there are |T| elements in Z We must have at least |T| unit intervals in T’ to cover Z, one
for each element in Z. If this is not the case, then there must be a unit interval in T’ that covers
more than 1 point in Z, this is impossible because any two points in Z are more than distance 1 from
each other. QED

Running Time:

Use your favorite O(nlog(n)) sorting algorithm to sort the set. The algorithm itself runs in O(n) time.
Hence the overall running time is O(nlog(n))

Problem 3 (10 points):

Given the sequence s, we try to find the longest subsequence LP(s) of s such that LP(s) is a
palindrome.

We find LP(s) recursively:

Given s, if s(1) = s(n) where n is the length of s, then LP(s) =s(1) + LP(s(2,n-1))+s(n), where s(2,n-1) is
the subsequence of s with the first and last characters removed and ‘+’ denotes concatenation

If s(1) !=s(n), then LP(s) = LP(s(1,n-1)) if |LP(s(1,n-1))| =|LP(s(2,n))|,
else: LP(s) = LP(s(2,n))
To include the base cases, we define LP(s(i)) = s(i) for any i from 1 to n

To implement this using dynamic programming, we need to have an nxn lookup matrix where for

definition, the (1,n) entry would be the solution. We keep track of the path through the matrix that
the algorithm dictates down to the diagonal and fill in the needed entries from the diagonal up to
the (1,n) entry to get the longest palindrome.

The computational cost is O(n?)

Problem 5 (10 points):
We solve this using dynamic programming:

Suppose on the first day, there are k hotels within range (i.e. within distance d from the starting point),
for each of these hotels, we compute the penalty if we end up staying at that hotel, which we designate
h;. We define Cost(h;) as the minimum total penalty for a trip that begins at hotel i. Hence, our sub-
problems consist of trips that begin at hotels (Without loss of generality, we assume that each pair of
consecutive hotels is within distance d of each other)

So the recursion is:

Cost(h;) = Mingk<iandx_i-x_k<=d1 ((d-X)"2 + Cost(hy))
Pseudocode:
Initialize 1x(n+1) Cost array

Cost[0] =0

Penalty(x)
If x is within range,
Return (d-x)"2
Else
Return oo

fori=1ton
min = Penaltyl[i]
forj=1toi-1
newpenalty = Cost[j] + Penalty(x;-x;)
if newpenalty < min
min = newpenalty
Cost[i] = min
return Cost[n]

Computational Cost: There are essentially two for loops that we have to go over, and we have to store n

sub problem solutions in a vector, the total computational cost is O(n?)

CS 161 Summer 2009
Homework #5 Sample Solutions

Regrade Policy: If you believe an error has been made in the grading of your homework,
you may resubmit it for a regrade. If the error consists of more than an error in addition of
points, please include with your homework a detailed explanation of which problems you
think you deserve more points on and why. We reserve the right to regrade your entire
homework, so your final grade may either increase or decrease.

Problem 2 [15 points]

(a)

(10 points) We order the subproblem by size. Let V be a one dimension boolean
array. Define V(i) = true if and only if the substring s1, so, ..., s; is valid. That is,
it can be decomposed into a sequence of words from the dictionary. In this problem
we are interested in computing V'(n).

Now, we fill up V bottom up.

e Base case: V(0) = false;
e Recurrence: V(i +1) =\ p;1[V(k—1) ADICT(S, k,i + 1)], for 0 <i <n.

Here \/ is the OR boolean operation. String si, 2, ..., s;+1 is valid as long as there
exists some k, s.t. substring si, so, ..., sk_1 is valid AND sg, ..., s;41 is a word from
the dictionary (actually the last word for this string).

Running time: O(n?). That is because the running time for computing each V(i) is
O(i), for all 1 < i < n.

(5 points) In addition to the table V', we also store a table B, where if V(i) = true,
then B(i) is the index of the beginning index of the word ending at index i. We
can modify the algorithm as follows: Initialize B with all entries as 0; Whenever
we set entry V(i + 1) = true, we set B(i + 1) = k, where k is an index such that
[V(k —1) ApiCT(S, k,i 4+ 1)] = true. (If there are more than one k that satisfy this
condition, we can just pick one arbitrarily.)

After the recursive algorithm ends, if V(n) = true, we traverse B backwards and
then print the string as described in the PRINT algorithm below.

The total running time of the modified algorithm is still O(n?).

Algorithm 1 PrINT(S, B)
1=n
while 7 > 0 do
temp = B(i)
B(i) = -1
1 =temp
end while
: fori=1tondo
PRINT s;
if ¢ <n and B[i + 1] == —1 then
PRINT
end if
: end for

_ = =
Y 22

Problem 4 [10 points|

The optimal strategy is the obvious greedy one. Beginning from the start point, we should
go to the farthest hotel that we can get to within d miles. Stay there for one night. Then
go to the farthest hotel we can get to within d miles of where stayed, and rest there, and so
on. If there are n hotels on the map, we need to inspect each one just once. The running
time is therefore O(n).

To prove the optimality of our algorithm, we use a "stays ahead” argument (as called in
class).

For the first day, suppose there are k hotels beyond the start that are within d miles of the
start. Our greedy algorithm chooses the k-th hotel as its first stop. No hotel beyond the
k-th works as a first stop, since we will run out of the d miles upper limit. If a solution
chooses a hotel j < k as its first stop, then we could choose the k-th hotel instead, having
at least as much miles to the destination when we leave the k-th hotel as if we’d chosen
the j-th hotel. Therefore, we would get at least as far without stopping again if we had
chosen the k-th hotel.

Now, suppose there are m possible hotels. Consider an optimal solution with s hotels and
whose first stop is at the k-th hotel. Then the rest of the optimal solution must be an
optimal solution to the subproblem of the remaining m — k hotels. Otherwise, if there were
a better solution to the subproblem, i.e., one with fewer than s — 1 stops, we could use it
to come up with a solution with fewer than s stops for the full problem, contradicting our
supposition of optimality.

Thus our algorithm is optimal.

Alternately this argument can be viewed as follows: The first choice made by our algorithm
is no worse than any other solution as in any solution we are better off postponing the first
stop as much as possible. Next, observe that given the first stop, the remaining choices

CS161 Homework #5 Sample Solutions 3

can be viewed as a subproblem. As before, the first stop in this subproblem is chosen to
be the farthest possible choice without go beyond d miles.

Extra Credit [5 points]

We can consider dynamic programming approach to solve the problem.
Assume W can be divided by 3. Otherwise we can return NOTSOLVABLE. We can construct
a three-dimension boolean matrix M of size (% + 1) x (% + 1) x (n+ 1), indexed from 0.
Define M|z, y, k] = true if and only if there are two disjoint subsets I, J C {1,...,k} such
that > ,c;a; =z and), ;a; =y. We construct the matrix as follows,

e Base case k = 0:
M]J0,0,0] = true;
Mlz,y,0] = false, for z +y > 0.

e The recursive step:
Mz, y, k] = Mz — ag,y,k — 1|V M[z,y — a, k — 1|V M[z,y,k—1],for k=1,....,n

Here V means OR operation. That is, there are three possible ways to place number ay.
(1) If we put ai into the first partition (that is to insert k into I), then Mz, y, k] =
Mz — ag,y, k — 1];

(2) If we put ay into the second partition (that is to insert k into J), then Mz, y, k] =
Mlz,y — ag, k — 1];

(3) If we put ay, into the third partition, then M|z, y, k] = M|z, y, k — 1].

If we construct M accordingly, the answer of this problem is in the entry M [%, %,

The running time is O(W?2n), since there are (% + 1)2(n + 1) entries in M and each

can be filled in O(1) time.

