
Space-Efficient Manifest Contracts

Michael Greenberg
Princeton University

mg19@cs.princeton.edu

Abstract
The standard algorithm for higher-order contract checking can lead
to unbounded space consumption and can destroy tail recursion,
altering a program’s asymptotic space complexity. While space
efficiency for gradual types—contracts mediating untyped and
typed code—is well studied, sound space efficiency for manifest
contracts—contracts that check stronger properties than simple
types, e.g., “is a natural” instead of “is an integer”—remains an
open problem.

We show how to achieve sound space efficiency for manifest
contracts with strong predicate contracts. The essential trick is
breaking the contract checking down into coercions: structured,
blame-annotated lists of checks. By carefully preventing duplicate
coercions from appearing, we can restore space efficiency while
keeping the same observable behavior.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages—Language Constructs and Features

Keywords contracts; pre- and post-conditions; function proxy;
coercions; space efficiency

1. Introduction
Types are an extremely successful form of lightweight specifica-
tion: programmers can state their intent—e.g., plus is a function
that takes two numbers and returns another number—and then type
checkers can ensure that a program conforms to the programmer’s
intent. Types can only go so far though: division is, like addition,
a function that takes two numbers and returns another number...
so long as the second number isn’t zero. Conventional type sys-
tems do a good job of stopping many kinds of errors, but most
type systems cannot protect partial operations like division and
array indexing. Advanced techniques—singleton and dependent
types, for example—can cover many of these cases, allowing pro-
grammers to use types like “non-zero number” or “index within
bounds” to specify the domains on which partial operations are
safe. Such techniques are demanding: they can be difficult to un-
derstand, they force certain programming idioms, and they place
heavy constraints on the programming language, requiring purity
or even strong normalization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676967

Contracts are a popular compromise: programmers write type-
like contracts of the form Int → {x :Int | x 6= 0} → Int,
where the predicates x 6= 0 are written in code. These type-
like specifications can then be checked at runtime [5]. Models of
contract calculi have taken two forms: latent and manifest [12]. We
take the manifest approach here, which means checking contracts
with casts, written 〈T1⇒T2〉l e . Checking a predicate contract
(also called a refinement type, though that term is overloaded) like
{x :Int | x 6= 0} on a number n involves running the predicate
x 6= 0 with n for x . Casts from one predicate contract to another,
〈{x :B | e1}⇒{x :B | e2}〉l, take a constant k and check to see that
e2[k/x] −→∗ true. It’s hard to know what to do with function
casts at runtime: in 〈T11→T12⇒T21→T22〉l e , we know that e
is a T11→T12, but what does that tell us about treating e as a
T21→T22? Findler and Felleisen’s insight is that we must defer
checking, waiting until the cast value e gets an argument [5]. These
deferred checks are recorded on the value by means of a function
proxy, i.e., 〈T11→T12⇒T21→T22〉l e is a value when e is a
value; applying a function proxy unwraps it contravariantly. We
check the domain contract T1 on e , run the original function f on
the result, and then check that result against the codomain contract
T2:

(〈T11→T12⇒T21→T22〉l e1) e2 −→
〈T12⇒T22〉l (e1 (〈T21⇒T11〉l e2))

Findler and Felleisen neatly designed a system for contract check-
ing in a higher-order world, but there is a problem: contract check-
ing is space inefficient [15].

Contract checking’s space inefficiency can be summed up as
follows: function proxies break tail calls. Calls to an unproxied
function from a tail position can be optimized to not allocate stack
frames. Proxied functions, however, will unwrap to have codomain
contracts—breaking tail calls. We discuss other sources of space
inefficiency below, but breaking tail calls is the most severe. Con-
sider factorial written in accumulator passing style. The developer
may believe that the following can be compiled to use tail calls:

fact : {x :Int | x ≥ 0}→{x :Int | x ≥ 0}→{x :Int | x ≥ 0}
= λx :{x :Int | true}. λy :{y :Int | true}.

if x = 0 then y else fact (x − 1) (x ∗ y)

A cast insertion algorithm [29] might produce the following non-
tail recursive function:

fact =
〈{x :Int | true}→{y :Int | true}→{z :Int | true}⇒
{x :Int | x ≥ 0}→{y :Int | y ≥ 0}→{z :Int | x ≥ 0}〉lfact
λx :{x :Int | true}. λy :{y :Int | true}.

if x = 0 then y else
(〈{x :Int | x ≥ 0}⇒{x :Int | true}〉lfact (fact . . .))

Tail-call optimization is essential for usable functional languages.
Space inefficiency has been one of two significant obstacles for
pervasive use of higher-order contract checking. (The other is state,
which we do not treat here.)

In this work, we show how to achieve semantics-preserving
space efficiency for non-dependent contract checking. Our ap-
proach is inspired by work on gradual typing [27], a form of
(manifest) contracts designed to mediate dynamic and simple
typing—that is, gradual typing (a) allows the dynamic type, and
(b) restricts the predicates in contracts to checks on type tags.
Herman et al. [15] developed the first space-efficient gradually
typed system, using Henglein’s coercions [14]; Siek and Wadler
[28] devised a related system supporting blame. The essence of
the solution is to allow casts to merge: given two adjacent casts
〈T2⇒T3〉l2 (〈T1⇒T2〉l1 e), we must somehow combine them
into a single cast. Siek and Wadler annotate their casts with an in-
termediate type representing the greatest lower bound of the types
encountered. Such a trick doesn’t work in our more general setting:
simple types plus dynamic form a straightforward lattice using
type precision as the ordering, but it’s less clear what to do when
we have arbitrary predicate contracts.

We define two modes of a single calculus, λH. The classic mode
is just the conventional, inefficient semantics; the eidetic mode
annotates casts with refinement lists and function coercions—a new
form of coercion inspired by Greenberg [9]. The coercions keep
track of checking so well that the type indices and blame labels on
casts are unnecessary:

〈T2
c2⇒T3〉• (〈T1

c1⇒T2〉• e) −→E 〈T1
join(c1,c2)⇒ T3〉• e

These coercions form a skew lattice: refinement lists have ordering
constraints that break commutativity. Eidetic λH is space efficient
and observationally equivalent to the classic mode.

Eidetic λH is the first manifest contract calculus that is both
sound and space efficient with respect to the classic semantics—a
result contrary to Greenberg [9], who conjectured that such a result
is impossible. We believe that space efficiency is a critical step
towards the implementation of practical languages with manifest
contracts.

We do not prove a blame theorem [30], since we lack the clear
separation of dynamic and static typing found in gradual typing.
We conjecture that such a theorem could be proved. Our model
has two limits worth mentioning: we do not handle dependency, a
common and powerful feature in manifest systems; and, our bounds
for space efficiency are galactic—they establish that contracts con-
sume constant space, but do nothing to reduce that constant [20].
Our contribution is showing that sound space efficiency is possible
where it was believed to be impossible [9]; we leave evidence that
it is practicable for future work.

Our proofs are available in the extended version [10], Appen-
dices A–C.

Readers who are very familiar with this topic can read Fig-
ures 1, 2, and 3 and then skip directly to Section 4. Readers who
understand the space inefficiency of contracts but aren’t particularly
familiar with manifest contracts can skip Section 2 and proceed to
Section 3.

2. Function proxies
Space inefficient contract checking breaks tail recursion—a show-
stopping problem for realistic implementations of pervasive con-
tract use. Racket’s contract system [22], the most widely used
higher-order contract system, takes a “macro” approach to con-
tracts: contracts typically appear only on module interfaces, and
aren’t checked within a module. Their approach comes partly out
of a philosophy of breaking invariants inside modules but not out
of them, but also partly out of a need to retain tail recursion within
modules. Space inefficiency has shaped the way their contract sys-
tem has developed. They do not use our “micro” approach, wherein
annotations and casts permeate the code.

Tail recursion aside, there is another important source of space
inefficiency: the unbounded number of function proxies. Hierar-
chies of libraries are a typical example: consider a list library and a
set library built using increasingly sorted lists. We might have:

null : α List→{x :Bool | true} = ...
head : {x :α List | not (null x)}→α = ...

empty : α Set→{x :Bool | true} = null
min : {x :α Set | not (empty x)}→α = head

Our code reuse comes with a price: even though the precondition
on min is effectively the same as that on head, we must have two
function proxies, and the non-emptiness of the list representing the
set is checked twice: first by checking empty, and again by check-
ing null (which is the same function). Blame systems like those
in Racket encourage modules to declare contracts to avoid being
blamed, which can result in redundant checking like the above
when libraries requirements imply sub-libraries’ requirements.

Or consider a library of drawing primitives based around
painters, functions of type Canvas→Canvas. An underlying graph-
ics library offers basic functions for manipulating canvases and
functions over canvases, e.g., primFlipH is a painter transformer—
of type (Canvas→Canvas)→(Canvas→Canvas)—that flips the
generated images horizontally. A wrapper library may add de-
rived functions while re-exporting the underlying functions with
refinement types specifying a canvas’s square dimensions, where
SquareCanvas = {x :Canvas | width(x) = height(x)}:

flipH p = 〈Canvas→Canvas⇒
SquareCanvas→SquareCanvas〉l

(primFlipH
(〈SquareCanvas→SquareCanvas⇒

Canvas→Canvas〉l p))

The wrapper library only accepts painters with appropriately re-
fined types, but must strip away these refinements before calling the
underlying implementation—which demands Canvas→Canvas
painters. The wrapper library then has to cast these modified func-
tions back to the refined types. Calling flipH (flipH p) yields:

〈Canvas→Canvas⇒SquareCanvas→SquareCanvas〉l
(primFlipH

(〈SquareCanvas→SquareCanvas⇒Canvas→Canvas〉l
(〈Canvas→Canvas⇒SquareCanvas→SquareCanvas〉l

(primFlipH
(〈SquareCanvas→SquareCanvas⇒

Canvas→Canvas〉l p)))))

That is, we first cast p to a plain painter and return a new painter p′.
We then cast p′ into and then immediately out of the refined type,
before continuing on to flip p′. All the while, we are accumulating
many function proxies beyond the wrapping done by the under-
lying implementation of primFlipH. Redundant wrapping can be-
come quite extreme, especially for continuation-passing programs.
Function proxies are the essential problem: nothing bounds their
accumulation. Unfolding unboundedly many function proxies cre-
ates stacks of unboundedly many checks—which breaks tail calls.
A space-efficient scheme for manifest contracts bounds the number
of function proxies that can accumulate.

3. Classic manifest contracts
The standard manifest contract calculus, λH, is originally due to
Flanagan [7]. We give the syntax for the non-dependent frag-
ment in Figure 1. We have highlighted in yellow the four syntactic
forms relevant to contract checking. This paper paper discusses two
modes of λH: classic λH, mode C,and eidetic λH, mode E. Each of
these languages uses the syntax of Figure 1, while the typing rules

Modes
m ::= C classic λH; Section 3

| E eidetic λH; Section 4

Types
B ::= Bool | . . .
T ::= {x :B | e} | T1→T2

Terms
e ::= x | k | λx :T . e | e1 e2 | op(e1, . . . , en) |

〈T1
a⇒T2〉l e | 〈{x :B | e1}, e2, k〉l | ⇑l |

〈{x :B | e1}, s, r , k , e〉•
Annotations: type set, coercions, and refinement lists
a ::= • | c
c ::= r | c1 7→ c2
r ::= nil | {x :B | e}l , r

Statuses
s ::= X | ?

Locations
l ::= • | l1 | ...

Figure 1. Syntax of λH

and operational semantics are indexed by the mode m . The proofs
and metatheory are also mode-indexed. In an extended version of
this work, we develop two additional modes with slightly different
properties from eidetic λH, filling out a “framework” for space-
efficient manifest contracts [10]. We omit the other two modes here
to save space for eidetic λH, which is the only mode that is sound
with respect to classic λH.

The metavariable B is used for base types, of which at least
Bool must be present. There are two kinds of types. First, predicate
contracts {x :B | e}, also called refinements of base types or just
refinement types, denotes constants k of base type B such that
e[k/x] holds—that is, such that e[k/x] −→∗m true for any mode
m . Function types T1→T2 are standard.

The terms of λH are largely those of the simply-typed lambda
calculus: variables, constants k , abstractions, applications, and op-
erations should all be familiar. The first distinguishing feature of
λH’s terms is the cast, written 〈T1

a⇒T2〉l e . Here e is a term of
type T1; the cast checks whether e can be treated as a T2—if e
doesn’t cut it, the cast will use its label l to raise the uncatchable
exception ⇑l , read “blame l”. Our casts also have annotations a .
Classic doesn’t need annotations—we write • and say “none”. Ei-
detic λH uses coercions c, based on coercions in Henglein [14]. We
explain coercions in greater detail in Section 4, but they amount to
lists of blame-annotated refinement types r and function coercions.

The three remaining forms—active checks, blame, and coercion
stacks—only occur as the program evaluates. Casts between refine-
ment types are checked by active checks 〈{x :B | e1}, e2, k〉l . The
first term is the type being checked—necessary for the typing rule.
The second term is the current status of the check; it is an invari-
ant that e1[k/x] −→∗m e2. The final term is the constant being
checked, which is returned wholesale if the check succeeds. When
checks fail, the program raises blame, an uncatchable exception
written ⇑l . A coercion stack 〈{x :B | e1}, s, r , k , e〉• represents
the state of checking a coercion; we only use it in eidetic λH, so we
postpone discussing it until Section 4.

3.1 Core operational semantics
Our mode-indexed operational semantics for our manifest calculi
comprise three relations: valm e identifies terms that are values
in mode m (or m-values), resultm e identifies m-results, and
e1 −→m e2 is the small-step reduction relation for mode m .
Figure 2 defines the core rules. The rules for classic λH (m = C)

are in salmon; the shared space-efficient rules are in periwinkle. To
save space, we pass over standard rules.

The mode-agnostic value rules are straightforward: constants
are always values (V CONST), as are lambdas (V ABS). Each
mode defines its own value rule for function proxies, V PROXYm .
The classic rule, V PROXYC, says that a function proxy

〈T11→T12
•⇒T21→T22〉l e

is a C-value when e is a C-value. That is, function proxies can wrap
lambda abstractions and other function proxies alike. Eidetic λH
only allows lambda abstractions to be proxied. All of the space-
efficient calculi in the literature take our approach, where a function
cast applied to a value is a value; some space inefficient ones do,
too [5, 12, 13]. In other formulations of λH in the literature, function
proxies are implemented by introducing a new lambda as a wrapper
à la Findler and Felleisen’s wrap operator [1, 5, 7, 27]. Such an
η-expansion semantics is convenient, since then applications only
ever reduce by β-reduction. But it wouldn’t suit our purposes at
all: space efficiency demands that we combine function proxies. We
can also imagine a third, ungainly semantics that looks into closures
rather than having explicit function proxies. Results don’t depend
on the mode: m-values are always m-results (R VAL); blame is
always a result, too (R BLAME).

E BETA applies lambda abstractions via substitution, using a
call-by-value rule. Note that β reduction in mode m requires that
the argument is an m-value. The reduction rule for operations
(E OP) defers to operations’ denotations, [[op]]; since these may be
partial (e.g., division), we assign types to operations that guarantee
totality (see Section 3.2). That is, partial operations are a potential
source of stuckness, and the types assigned to operations must
guarantee the absence of stuckness. Robin Milner famously stated
that “well typed expressions don’t go wrong” [21]; his programs
could go wrong by (a) applying a boolean like a function or (b)
conditioning on a function like a boolean. Systems with more
base types can go wrong in more ways, some of which are hard
to capture in standard type systems. Contracts allow us to bridge
that gap. Letting operations get stuck is a philosophical stance—
contracts expand the notion of “wrong”.

E UNWRAP applies function proxies to values, contravariantly
in the domain and covariantly in the codomain. We also split up
each cast’s annotation, using dom(a) and cod(a)—each mode is
discussed in its respective section. E CHECKNONEC turns a cast
between refinement types into an active check with the same blame
label. We discard the source type—we already know that k is a
{x :B | e1}—and substitute the scrutinee into the target type,
e2[k/x], as the current state of checking. We must also hold onto
the scrutinee, in case the check succeeds. We are careful to not ap-
ply this rule in eidietc λH, which must generate annotations be-
fore running checks. Active checks evaluate by the congruence
rule E CHECKINNER until one of three results adheres: the predi-
cate returns true, so the whole active check returns the scrutinee
(E CHECKOK); the predicate returns false, so the whole active
check raises blame using the label on the chceck (E CHECKFAIL);
or blame was raised during checking, and we propagate it via
E CHECKRAISE. Checks in eidetic λH use slightly different forms,
described in Section 4.

The core semantics includes several other congruence rules:
E APPL, E APPR, and E OPINNER. Since space bounds rely not
only on limiting the number of function proxies but also on accu-
mulation of casts on the stack, the core semantics doesn’t include a
cast congruence rule. The congruence rule for casts in classic λH,
E CASTINNERC, allows for free use of congruence. In the space-
efficient calculus, the use of congruence is instead limited by the
rules E CASTINNERE and E CASTMERGEE. Cast arguments only
take congruent steps when they aren’t casts themselves. A cast ap-

Values and results valm e resultm e

valm k
V CONST

valm λx :T . e
V ABS

valC e

valC 〈T11→T12
•⇒T21→T22〉l e

V PROXYC valm e

resultm e
R VAL

resultm ⇑l
R BLAME

Shared operational semantics e1 −→m e2

valm e2

(λx :T . e12) e2 −→m e12[e2/x]
E BETA

valm e1 ... valm en

op(e1, ... , en) −→m [[op]] (e1, ... , en)
E OP

valm 〈T11→T12
a⇒T21→T22〉l e1 valm e2

(〈T11→T12
a⇒T21→T22〉l e1) e2 −→m 〈T12

cod(a)⇒ T22〉l (e1 (〈T21
dom(a)⇒ T11〉l e2))

E UNWRAP

dom(•) = •
dom(c1 7→ c2) = c1

cod(•) = •
cod(c1 7→ c2) = c2

〈{x :B | e1}
•⇒{x :B | e2}〉l k −→C 〈{x :B | e2}, e2[k/x], k〉l

E CHECKNONEC

〈{x :B | e}, true, k〉l −→m k
E CHECKOK

〈{x :B | e}, false, k〉l −→m ⇑l
E CHECKFAIL

e1 −→m e′1
e1 e2 −→m e′1 e2

E APPL
valm e1 e2 −→m e′2
e1 e2 −→m e1 e′2

E APPR

valm e1 ... valm ei−1 ei −→m e′i
op(e1, . . . , ei−1 , ei , . . . , en) −→m op(e1, . . . , ei−1 , e′i , . . . , en)

E OPINNER

e −→C e′

〈T1
•⇒T2〉l e −→C 〈T1

•⇒T2〉l e′
E CASTINNERC e2 −→m e′2

〈{x :B | e1}, e2, k〉l −→m 〈{x :B | e1}, e′2, k〉l
E CHECKINNER

e2 −→E e′2 e2 6= 〈T1
a′
⇒T2〉l

′
e′′2

〈T2
a⇒T3〉l e2 −→E 〈T2

a⇒T3〉l e′2
E CASTINNERE

c3 = join(c1, c2)

〈T2
c2⇒T3〉l (〈T1

c1⇒T2〉l′ e2) −→E 〈T1
c3⇒T3〉l e2

E CASTMERGEE

⇑l e2 −→m ⇑l
E APPRAISEL

valm e1

e1 ⇑l −→m ⇑l
E APPRAISER

〈T1
S⇒T2〉l ⇑l ′ −→m ⇑l ′

E CASTRAISE

valm e1 ... valm ei−1

op(e1, . . . , ei−1 ,⇑l , . . . , en) −→m ⇑l
E OPRAISE

〈{x :B | e},⇑l , k〉l′ −→m ⇑l
E CHECKRAISE

Figure 2. Core operational semantics of λH; classic λH rules are salmon; space-efficient rules are periwinkle

plied to another cast merges, using the join function. Each space-
efficient calculus uses a different annotation scheme, so each one
has a different merge function. We are careful to define join only
over coercions, so E CASTMERGEE won’t apply on the empty an-
notation, • (read “none”). We have E CASTMERGEE arbitrarily
retain the label of the outer cast. This choice is ultimately irrele-
vant, since eidetic λH won’t need to keep track of blame labels on
casts themselves (Section 4). In addition to congruence rules, there
are blame propagation rules, which are universal: E APPRAISEL,
E APPRAISER, E CASTRAISE, E OPRAISE. These rules prop-
agate the uncatchable exception ⇑l while obeying call-by-value
rules.

3.2 Type system
All modes share a type system, given in Figure 3. All judgments
are universal and simply thread the mode through—except for an-
notation well formedness `m a ‖ T1 ⇒ T2, which is mode spe-
cific, and a single eidetic-specific rule given in Figure 4. The type
system comprises several relations: context well formedness `m Γ
and type well formedness `m T ; type compatibility ` T1 ‖ T2, a

mode-less comparison of the skeleton of two types; annotation well
formedness `m a ‖ T1 ⇒ T2; and term typing Γ `m e : T .

Context well formedness is entirely straightforward; type well
formedness requires some care to get base types off the ground.
We establish as an axiom that the raw type {x :B | true} is well
formed for every base type B (WF BASE); we then use raw types
to check that refinements are well formed: {x :B | e} is well
formed in mode m if e is well typed as a boolean in mode m
when x is a value of type B (WF REFINE). Without WF BASE,
WF REFINE wouldn’t have a well formed context. Function types
are well formed in mode m when their domains and codomains
are well formed in mode m . (Unlike many recent formulations,
our functions are not dependent—we leave dependency as future
work.) Type compatibility ` T1 ‖ T2 identifies types which can
be cast to each other: the types must have the same “skeleton”. It
is reasonable to try to cast a non-zero integer {x :Int | x 6= 0} to
a positive integer {x :Int | x > 0}, but it is senseless to cast it to
a boolean {x :Bool | true} or to a function type T1→T2. Every
cast must be between compatible types; at their core, λH programs
are simply typed lambda calculus programs. Type compatibility

Context and type well formedness `m Γ `m T

`m ∅
WF EMPTY

`m Γ `m T

`m Γ, x :T
WF EXTEND

`m {x :B | true}
WF BASE

x :{x :B | true} `m e : {x :Bool | true}
`m {x :B | e}

WF REFINE
`m T1 `m T2

`m T1→T2
WF FUN

Type compatibility and annotation well formedness ` T1 ‖ T2 `m a ‖ T1 ⇒ T2

` {x :B | e1} ‖ {x :B | e2}
S REFINE

` T11 ‖ T21 ` T12 ‖ T22

` T11→T12 ‖ T21→T22
S FUN

` T1 ‖ T2 `m T1 `m T2

`m • ‖ T1 ⇒ T2
A NONE

Expression typing Γ `m e : T

`m Γ x :T ∈ Γ

Γ `m x : T
T VAR

`m T1 Γ, x :T1 `m e12 : T2

Γ `m λx :T1. e12 : T1→T2
T ABS

`m Γ `m T

Γ `m ⇑l : T
T BLAME

`m Γ `m {x :B | e} ty(k) = B e[k/x] −→∗m true

Γ `m k : {x :B | e}
T CONST

ty(op) = T1 → ... → Tn→T Γ `m ei : Ti

Γ `m op(e1, . . . , en) : T
T OP

Γ `m e1 : (T1→T2) Γ `m e2 : T1

Γ `m e1 e2 : T2
T APP

`m a ‖ T1 ⇒ T2 Γ `m e : T1

Γ `m 〈T1
a⇒T2〉l e : T2

T CAST

`m Γ `m {x :B | e1} ty(k) = B ∅ `m e2 : {x :Bool | true} e1[k/x] −→∗m e2

Γ `m 〈{x :B | e1}, e2, k〉l : {x :B | e1}
T CHECK

Figure 3. Universal typing rules of λH

is reflexive, symmetric, and transitive; i.e., it is an equivalence
relation.

Our family of calculi use different annotations. All source pro-
grams (defined below) begin without annotations—we write the
empty annotation •, read “none”. The universal annotation well
formedness rule just defers to type compatibility (A NONE); it is
an invariant that `m a ‖ T1 ⇒ T2 implies ` T1 ‖ T2.

As for term typing, the T VAR, T ABS, T OP, and T APP
rules are entirely conventional. T BLAME types blame at any (well
formed) type. A constant k can be typed by T CONST at any type
{x :B | e} in mode m if: (a) k is a B , i.e., ty(k) = B ; (b) the type
in question is well formed in m; and (c), if e[k/x] −→∗m true. As
an immediate consequence, we can derive the following rule typing
constants at their raw type, since true −→∗m true in all modes and
raw types are well formed in all modes (WF BASE):

`m Γ ty(k) = B

Γ `m k : {x :B | true}
This approach to typing constants in a manifest calculus is novel:
it offers a great deal of latitude with typing, while avoiding the
subtyping of some formulations [7, 12, 17, 18] and the extra rule of
others [1]. We assume that ty(k) = Bool iff k ∈ {true, false}.

We require in T OP that ty(op) only produces well formed first-
order types, i.e., types of the form `m {x :B1 | e1} → ... →
{x :Bn | en}. We require that the type is consistent with the opera-
tion’s denotation: [[op]] (k1, ... , kn) is defined iff ei [ki/x] −→∗m
true for all m . For this evaluation to hold for every system we
consider, the types assigned to operations can’t involve casts that
both (a) stack and (b) can fail. We believe this is not so stringent
a requirement: the types for operations ought to be simple, e.g.
ty(div) = {x :Real | true}→{y :Real | y 6= 0}→{z :Real | true},
and stacked casts only arise in stack-free terms due to function
proxies. In general, it is interesting to ask what refinement types

to assign to constants, as careless assignments can lead to circular
checking (e.g., if division has a codomain cast checking its work
with multiplication and vice versa).

The typing rule for casts, T CAST, relies on the annotation well
formedness rule: 〈T1

a⇒T2〉l e is well formed in mode m when
`m a ‖ T1 ⇒ T2 and e is a T1. Allowing any cast between
compatible base types is conservative: a cast from {x :Int | x > 0}
to {x :Int | x ≤ 0} always fails. Earlier work has used SMT
solvers to try to statically reject certain casts and eliminate those
that are guaranteed to succeed [2, 7, 18]; we omit these checks, as
we view them as secondary—a static analysis offering bug-finding
and optimization, and not the essence of the system.

The final rule, T CHECK, is used for checking active checks,
which should only occur at runtime. In fact, they should only ever
be applied to closed terms; the rule allows for any well formed
context as a technical device for weakening.

Active checks 〈{x :B | e1}, e2, k〉l arise as the result of casts
between refined base types, as in the following classic λH evalua-
tion of a successful cast:

〈{x :B | e} •⇒{x :B | e ′}〉l k −→C 〈{x :B | e ′}, e ′[k/x], k〉l
−→∗C 〈{x :B | e ′}, true, k〉l
−→C k

If we are going to prove type soundness via syntactic methods [32],
we must have enough information to type k at {x :B | e ′}. For
this reason, T CHECK requires that e1[k/x] −→∗m e2; this way,
we know that e ′[k/x] −→∗m true at the end of the previous
derivation, which is enough to apply T CONST. The other premises
of T CHECK ensure that the types all match up: that the target
refinement type is well formed; that k has the base type in question;
and that e2, the current state of the active check, is also well formed.

To truly say that our languages share a syntax and a type system,
we highlight a subset of type derivations as source program type

derivations. We show that source programs well typed in one mode
are well typed in the all modes [10].

3.1 Definition [Source program]: A source program type deriva-
tion obeys the following rules:

– T CONST only ever assigns the type {x :ty(k) | true}. Varia-
tions in each mode’s evaluation aren’t reflected in the (source pro-
gram) type system. (We could soundly relax this requirement to
allow {x :ty(k) | e} such that e[k/x] −→∗m true for any mode
m .)

– Casts have empty annotations a = •. Casts also have blame
labels, and not empty blame (also written •).

– T CHECK, T STACK (Section 4), and T BLAME are not
used—these are for runtime only.

Note that source programs don’t use any of the typing rules that de-
fer to the evaluation relation (T CHECK and T STACK), so we can
maintain a clear phase distinction between type checking programs
and running them.

3.3 Metatheory
One distinct advantage of having a single syntax with parame-
terized semantics is that some of the metatheory can be done
once for all modes. Each mode proves its own canonical forms
lemma—since each mode has a unique notion of value—and
its own progress and preservation lemmas for syntactic type
soundness [32]. But other standard metatheoretical machinery—
weakening, substitution, and regularity—can be proved for all
modes at once (see Section A.1). To wit, we prove syntactic type
soundness in Appendix A.2 for classic λH in just three mode-
specific lemmas: canonical forms, progress, and preservation. In
every theorem statement, we include a reference to the lemma
number where it is proved in the appendix. In PDF versions, this
reference is hyperlinked.

Lemma [Classic canonical forms (A.11)]: If ∅ `C e : T and
valC e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗C true.

– If T = T1→T2, then either e = λx :T . e ′ or e =
〈T11→T12

•⇒T21→T22〉l e ′.

Lemma [Classic progress (A.12)]: If ∅ `C e : T , then either:

1. resultC e , i.e., e = ⇑l or valC e; or
2. there exists an e ′ such that e −→C e ′.

Lemma [Classic preservation (A.13)]: If ∅ `C e : T and
e −→C e ′, then ∅ `C e ′ : T .

4. Eidetic space efficiency
Eidetic λH uses coercions. Coercions do two critical things: they re-
tain check order, and they track blame. Our coercions are ultimately
inspired by those of Henglein [14]; we discuss the relationship be-
tween our coercions and his in related work (Section 7). Recall the
syntax of coercions from Figure 1:

c ::= r | c1 7→ c2
r ::= nil | {x :B | e}l , r

Coercions come in two flavors: blame-annotated refinement lists
r—zero or more refinement types, each annotated with a blame
label—and function coercions c1 7→ c2. We write them as comma
separated lists, omitting the empty refinement list nil when the re-
finement list is non-empty. We define the coercion well formedness
rules, an additional typing rule, and reduction rules for eidetic λH

in Figure 4. To ease the exposition, our explanation doesn’t mirror
the rule groupings in the figure.

As a general intuition, coercions are plans for checking: they
contain precisely those types to be checked. Refinement lists are
well formed for casts between {x :B | e1} and {x :B | e2}
when: (a) every type in the list is a blame-annotated, well formed
refinement of B , i.e., all the types are of the form {x :B | e}l and
are therefore similar to the indices; (b) there are no duplicated types
in the list; and (c) the target type {x :B | e2} is implied by some
other type in the list. Note that the input type for all refinement
lists can be any well formed refinement—this corresponds to the
intuition that base types have no negative parts, i.e., casts between
refinements ignore the type on the left. Finally, we simply write
“no duplicates in r”—it is an invariant during the evaluation of
source programs. Function coercions, on the other hand, have a
straightforward (contravariant) well formedness rule.

The E COERCE rule translates source-program casts to coer-
cions: coerce(T1,T2, l) is a coercion representing exactly the
checking done by the cast 〈T1

•⇒T2〉l. All of the refinement types
in coerce(T1,T2, l) are annotated with the blame label l , since
that’s the label that would be blamed if the cast failed at that type.
Since a coercion is a complete plan for checking, a coercion an-
notation obviates the need for type indices and blame labels. To
this end, E COERCE drops the blame label from the cast, replacing
it with an empty label. We keep the type indices so that we can
reuse E CASTMERGEE from the universal semantics, and also as
a technical device in the preservation proof.

The actual checking of coercions rests on the treatment of re-
finement lists: function coercions are expanded as functions are ap-
plied by E UNWRAP, so they don’t need much special treatment
beyond a definition for dom and cod. Eidetic λH uses coercion
stacks 〈{x :B | e1}, s, r , k , e2〉• to evaluate refinement lists. Coer-
cion stacks are type checked by T STACK (in Figure 4). We explain
the operational semantics before explaining the typing rule. Coer-
cion stacks are runtime-only entities comprising five parts: a target
type, a status, a pending refinement list, a constant scrutinee, and a
checking term. We keep the target type of the coercion for preser-
vation’s sake. The status bit s is eitherX or ?: when the status isX,
we are currently checking or have already checked the target type
{x :B | e1}; when it is ?, we haven’t. The pending refinement list r
holds those checks not yet done. When s = ?, the target type is still
in r . The scrutinee k is the constant we’re checking; the checking
term e2 is either the scrutinee k itself, or it is an active check on k .

The evaluation of a coercion stack proceeds as follows. First,
E COERCESTACK starts a coercion stack when a cast between
refinements meets a constant, recording the target type, setting the
status to ?, and setting the checking term to k . Then E STACKPOP
starts an active check on the first type in the refinement list, using its
blame label on the active check—possibly updating the status if the
type being popped from the list is the target type. The active check
runs by the congruence rule E STACKINNER, eventually returning
k itself or blame. In the latter case, E STACKRAISE propagates the
blame. If not, then the scrutinee is k once more and E STACKPOP
can fire again. Eventually, the refinement list is exhausted, and
E STACKDONE returns k .

Now we can explain T STACK’s many jobs. It must recapitulate
A REFINE, but not exactly—since eventually the target type will
be checked and no longer appear in r . The status s differentiates
what our requirement is: when s = ?, the target type is in r . When
s = X, we either know that k inhabits the target type or that we are
currently checking the target type (i.e., an active check of the target
type at some blame label reduces to our current checking term).

Finally, we need to define how to merge casts. We use the join
operator, which is very nearly concatenation on refinement lists
and a contravariant homomorphism on function coercions. It’s not

Coercion implication predicate: axioms {x :B | e1} ⊃ {x :B | e2}

(Reflexivity) If `E {x :B | e} then {x :B | e} ⊃ {x :B | e}.
(Transitivity) If {x :B | e1} ⊃ {x :B | e2} and {x :B | e2} ⊃ {x :B | e3} then {x :B | e1} ⊃ {x :B | e3}.

(Adequacy) If {x :B | e1} ⊃ {x :B | e2} then ∀k ∈ KB . e1[k/x] −→∗E true implies e2[k/x] −→∗E true.
(Decidability) For all `E {x :B | e1} and `E {x :B | e2}, it is decidable whether {x :B | e1} ⊃ {x :B | e2}.

Coercion well formedness and term typing `m c ‖ T1 ⇒ T2 Γ `m e : T

`E {x :B | e1} `E {x :B | e2}
∀{x :B | e} ∈ r . `E {x :B | e} no duplicates in r
∃{x :B | e} ∈ r . {x :B | e} ⊃ {x :B | e2}

`E r ‖ {x :B | e1} ⇒ {x :B | e2}
A REFINE

`E c1 ‖ T21 ⇒ T11 `E c2 ‖ T12 ⇒ T22

`E c1 7→ c2 ‖ (T11→T12)⇒ (T21→T22)
A FUN

`E Γ `E {x :B | e1} ty(k) = B ∅ `E e2 : {x :B | e3} ∀{x :B | e} ∈ r . `E {x :B | e}
s = X implies e1[k/x] −→∗E true ∨ (∃{x :B | e}. ∃l . {x :B | e} ⊃ {x :B | e1} ∧ 〈{x :B | e}, e[k/x], k〉l −→∗E e2)
s = ? implies (∃{x :B | e} ∈ r . {x :B | e} ⊃ {x :B | e1})

Γ `E 〈{x :B | e1}, s, r , k , e2〉• : {x :B | e1}
T STACK

Values and operational semantics valE e e1 −→E e2

valE 〈T11→T12
c1 7→c2⇒ T21→T22〉• λx :T . e

V PROXYE

〈T1
•⇒T2〉l e −→E 〈T1

coerce(T1,T2,l)⇒ T2〉• e
E COERCE

〈{x :B | e1}
r⇒{x :B | e2}〉• k −→E 〈{x :B | e2}, ?, r , k , k〉•

E COERCESTACK

〈{x :B | e}, s, ({x :B | e′}l , r), k , k〉• −→E 〈{x :B | e}, s ∨ (e = e′), r , k , 〈{x :B | e′}, e′[k/x], k〉l 〉•
E STACKPOP

e′ −→E e′′

〈{x :B | e}, s, r , k , e′〉• −→E 〈{x :B | e}, s, r , k , e′′〉•
E STACKINNER

〈{x :B | e}, s, r , k ,⇑l ′〉• −→E ⇑l ′
E STACKRAISE

〈{x :B | e},X, nil, k , k〉• −→E k
E STACKDONE

Cast translation and coercion operations

dom(c1 7→ c2) = c1
cod(c1 7→ c2) = c2

coerce({x :B | e1}, {x :B | e2}, l) = {x :B | e2}l
coerce(T11→T12,T21→T22, l) = coerce(T21,T11, l) 7→ coerce(T12,T22, l)

join({x :B | e}l , nil) = {x :B | e}l
join({x :B | e}l , r) = {x :B | e}l , drop (r , {x :B | e})

join(nil, r2) = r2
join(({x :B | e}l , r1), r2) = join({x :B | e}l , join(r1, r2))

join(c11 7→ c12, c21 7→ c22) = join(c21, c11) 7→ join(c12, c22)

drop (nil, {x :B | e}) = nil

drop (({x :B | e1}l , r), {x :B | e}) =

{
drop (r , {x :B | e}) {x :B | e} ⊃ {x :B | e1}
{x :B | e1}l , drop (r , {x :B | e}) {x :B | e} 6⊃ {x :B | e1}

X ∨ (e1 = e2) = X

? ∨ (e1 = e2) =

{
X e1 = e2
? otherwise

Figure 4. Typing rules and operational semantics for eidetic λH

concatenation because it uses an implication predicate, the pre-
order ⊃, to eliminate duplicates (because ⊃ is reflexive) and hide
subsumed types (because ⊃ is adequate). We read {x :B | e1} ⊃
{x :B | e2} as “{x :B | e1} implies {x :B | e2}”. When eliminating
types, join always chooses the leftmost blame label. Contravariance
means that join(c1, c2) takes leftmost labels in positive positions
and rightmost labels in negative ones. The coerce metafunction
and join operator work together to make sure that the refinement
lists are correctly ordered. As we show below, ‘correctly ordered’
means the positive parts take older labels and negative parts take
newer ones. E CASTMERGEE is slightly subtle—we never merge
casts with • as an annotation because such merges aren’t defined.

In Figure 4, we only give the axioms for ⊃: it must be an ad-
equate, decidable pre-order. Syntactic type equality is the simplest
implementation of the ⊃ predicate, but the reflexive transitive clo-
sure of any adequate decidable relation would work.

By way of example, consider a cast from T1 = {x :Int | x ≥
0}→{x :Int | x ≥ 0} to T2 = {x :Int | true}→{x :Int | x > 0}.
For brevity, we refer to the domains as Ti 1 and the codomains as
Ti 2. We find that (〈T1

•⇒T2〉l v1) v2 steps in classic λH to:

〈{x :Int | x ≥ 0} •⇒{x :Int | x > 0}〉l

(v1 (〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l v2))

e = 〈{x :Int | x mod 2 = 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E COERCE)

−→E 〈{x :Int | x mod 2 = 0}{x :Int|x 6=0}l3⇒ {x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E CASTINNER/E COERCE)

−→E 〈{x :Int | x mod 2 = 0}{x :Int|x 6=0}l3⇒ {x :Int | x 6= 0}〉l3

(〈{x :Int | x ≥ 0}{x :Int|x mod 2=0}l2⇒ {x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E CASTMERGEE)

−→E 〈{x :Int | x ≥ 0} r
′
⇒{x :Int | x 6= 0}〉l3

(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1)
where r ′ = {x :Int | x mod 2 = 0}l2 , {x :Int | x 6= 0}l3

(E CASTINNER/E COERCE)

−→E 〈{x :Int | x ≥ 0} r
′
⇒{x :Int | x 6= 0}〉l3

(〈{x :Int | true}{x :Int|x≥0}l1⇒ {x :Int | x ≥ 0}〉l1 −1)
(E CASTMERGEE)

−→E 〈{x :Int | true} r⇒{x :Int | x 6= 0}〉l3 −1
where r = {x :Int | x ≥ 0}l1 , r ′

(E COERCESTACK)
−→E 〈{x :Int | x 6= 0}, ?, r ,−1,−1〉•

(E STACKPOP)
−→E 〈{x :Int | x 6= 0}, ?, r ′,−1,

〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l1 〉•
−→∗E ⇑l1

Figure 5. Example of eidetic λH

Note that T1’s domain is checked but its codomain isn’t; the reverse
is true for T2. When looking at a cast, we can read off which
refinements are checked by looking at the positive parts of the target
type and the negative parts of the source type. The relationship
between casts and polarity is not a new one [4, 9, 13, 15, 31].
Unlike casts, coercions directly express the sequence of checks to
be performed. Consider the coercion generated from the cast above,
recalling that Ti 1 and Ti 2 are the domains and codomains of T1

and T2:

(〈T1
•⇒T2〉l v1) v2

−→E (〈T1
c⇒T2〉• v1) v2
where c = {x :Int | x ≥ 0}l 7→ {x :Int | x > 0}l

−→E (〈T11→T12
c⇒T21→T22〉• v1) v2

−→E 〈T12
{x :Int|x>0}l⇒ T22〉• (v1 (〈T21

{x :Int|x≥0}l⇒ T11〉• v2))

In this example, there is only a single blame label, l . Tracking
blame labels is critical for exactly matching classic λH’s behav-
ior. The examples rely on ⊃ being reflexive. First, we return to our
example from before in Figure 5. Throughout the merging, each re-
finement type retains its own original blame label, allowing eidetic
λH to behave just like classic λH.

We offer a final pair of examples, showing how coercions with
redundant types are merged. The intuition here is that positive
positions are checked covariantly—oldest (innermost) cast first—
while negative positions are checked contravariantly—newest (out-

ermost) cast first. Consider the classic λH term:

T1 = {x :Int | e11}→{x :Int | e21}
T2 = {x :Int | e12}→{x :Int | e22}
T3 = {x :Int | e13}→{x :Int | e22}
e = 〈T2

•⇒T3〉l2 (〈T1
•⇒T2〉l1 v)

Note that the casts run inside-out, from old to new in the positive
position, but they run from the outside-in, new to old, in the nega-
tive position.

e v ′ −→C 〈{x :Int | e22}
•⇒{x :Int | e22}〉l2

(〈{x :Int | e21}
•⇒{x :Int | e22}〉l1

(v (〈{x :Int | e12}
•⇒{x :Int | e12}〉l1

(〈{x :Int | e13}
•⇒{x :Int | e12}〉l2 v ′))))

The key observation for eliminating redundant checks is that only
the check run first can fail—there’s no point in checking a predicate
contract twice on the same value. So eidetic λH merges like so:

e −→∗E 〈T2
{x :Int|e12}l2 7→{x :Int|e22}l2⇒ T3〉•

(〈T1
{x :Int|e11}l1 7→{x :Int|e22}l1⇒ T2〉• v)

−→E 〈T1
c⇒T3〉• v

where

c = join({x :Int | e12}l2 , {x :Int | e11}l1) 7→
join({x :Int | e22}l1 , {x :Int | e22}l2)

= {x :Int | e12}l2 , {x :Int | e11}l1 7→ {x :Int | e22}l1

The coercion merge operator eliminates the redundant codomain
check, choosing to keep the one with blame label l1. Choosing l1
makes sense here because the codomain is a positive position and
l1 is the older, innermost cast. We construct a similar example for
merges in negative positions.

T1 = {x :Int | e11}→{x :Int | e21}
T ′2 = {x :Int | e11}→{x :Int | e22}
T ′3 = {x :Int | e13}→{x :Int | e23}
e ′ = 〈T ′2

•⇒T ′3〉l2 (〈T1
•⇒T ′2〉l1 v)

Again, the unfolding runs the positive parts inside-out and the
negative parts outside-in when applied to a value v ′:

〈{x :Int | e22}
•⇒{x :Int | e23}〉l2

(〈{x :Int | e21}
•⇒{x :Int | e22}〉l1

(v (〈{x :Int | e11}
•⇒{x :Int | e11}〉l1

(〈{x :Int | e13}
•⇒{x :Int | e11}〉l2 v ′))))

Running the example in eidetic λH, we reduce the redundant checks
in the domain:

e ′ −→∗E 〈T ′2
{x :Int|e11}l2 7→{x :Int|e23}l2⇒ T ′3〉•

(〈T1
{x :Int|e11}l1 7→{x :Int|e22}l1⇒ T ′2〉• v)

−→E 〈T1
c⇒T ′3〉• v

where
c = join({x :Int | e11}l2 , {x :Int | e11}l1) 7→

join({x :Int | e22}l1 , {x :Int | e23}l2)
= {x :Int | e12}l2 7→ {x :Int | e22}l1 , {x :Int | e23}l2

Following the outside-in rule for negative positions, we keep the
blame label l2 from the newer, outermost cast.

4.1 Metatheory
The proof of type soundness is a standard syntactic proof, relying
on a few small lemmas concerning refinement list well formedness
and the generic metatheory described in Section 3.3. The full proofs
are in Appendix A.3.

Lemma [Eidetic canonical forms (A.15)]: If ∅ `E e : T and
valE e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗E true.

– If T = T21→T22, then either e = λx :T . e ′ or e =
〈T11→T12

c1 7→c2⇒ T21→T22〉• λx :T11. e
′.

Lemma [Eidetic progress (A.16)]: If ∅ `E e : T , then either:

1. resultE e , i.e., e = ⇑l or valE e; or
2. there exists an e ′ such that e −→E e ′.

Lemma [Eidetic preservation (A.20)]: If ∅ `E e : T and e −→E

e ′ then ∅ `E e ′ : T .

Eidetic λH shares source programs (Definition 3.1) with classic
λH. We can therefore say that classic and eidetic λH are really just
modes of a single language.

Lemma [Source program typing for eidetic λH (A.21)]:
Source programs are well typed in C iff they are well typed in E,
i.e.:

– Γ `C e : T as a source program iff Γ `E e : T as a source
program.

– `C T as a source program iff `E T as a source program.
– `C Γ as a source program iff `E Γ as a source program.

5. Soundness for space efficiency
We want space efficiency to be sound: it would be space efficient
to never check anything. Classic λH is normative: the more a mode
behaves like classic λH, the “sounder” it is.

A single property summarizes how a space-efficient calculus
behaves with respect to classic λH: cast congruence. In classic
λH, if e1 −→C e2 then 〈T1

•⇒T2〉l e1 and 〈T1
•⇒T2〉l e2 be-

have identically. This cast congruence principle is easy to see,
because E CASTINNERC applies freely. In eidetic λH, however,
E CASTINNER can only apply when E CASTMERGEE doesn’t.
Merged casts may not behave the same as running the two casts
separately. Eidetic λH recovers a complete cast congruence, just
like classic λH has. Diagrammatically:

e1 e2

⇓

〈T1
•⇒T2〉l e1 〈T1

•⇒T2〉l e2

resultE e

E

∗
E ∗

E

The proof is in Appendix B, but it is worth observing here that
eidetic λH needs a proof of idempotency to justify the way it uses
reflexivity to eliminate redundant coercions: checking a property
once is as good as checking it twice. Naturally, this property only
holds without state.

Our proofs relating classic λH and eidetic λH are by logical
relations, found in Figure 6. In the extended version, the sound-
ness proofs for all three different space-efficient modes use a single
mode-indexed logical relation. Here we give its restriction to eidetic
λH. As far as alternative techniques go, an induction over evalua-
tion derivations wouldn’t give us enough information about evalua-
tions that return lambda abstractions. Other contextual equivalence
techniques (e.g., bisimulation) would probably work, too.

Value rules e1 ∼E e2 : T

k ∼E k : {x :B | e} ⇐⇒ ty(k) = B ∧ e[k/x] −→∗E true
e11 ∼E e21 : T1→T2 ⇐⇒ valC e1 ∧ valE e2 ∧

∀e12 ∼E e22 : T1. e11 e12 'E e21 e22 : T2

Term rules e1 'E e2 : T

e1 'E e2 : T
⇐⇒(

e1 −→∗C ⇑l ∧
e2 −→∗E ⇑l

)
∨

e1 −→∗C e′1 ∧ valC e′1 ∧
e2 −→∗E e′2 ∧ valE e′2 ∧
e′1 ∼E e′2 : T

Type rules T1 ∼E T2

{x :B | e1} ∼E {x :B | e2} ⇐⇒
∀e′1 ∼E e′2 : {x :B | true}. e1[e′1/x] 'E e2[e′2/x] : {x :Bool | true}
T11→T12 ∼E T21→T22 ⇐⇒ T11 ∼E T21 ∧ T12 ∼E T22

Closing substitutions and open terms Γ |=E δ

Γ ` e1 'E e2 : T

Γ |=E δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼E δ2(x) : Γ(x)
Γ ` e1 'E e2 : T ⇐⇒ ∀Γ |=E δ. δ1(e1) 'E δ2(e2) : T

Figure 6. Blame-exact, symmetric logical relation between classic
λH and eidetic λH

Mode Cast size Pending casts
Classic (m = C) 2Wh + L ∞
Eidetic (m = E) s2L+WB |e|

Table 1. Space efficiency of λH

Lemma [Similar casts are logically related (B.3)]: If T1 ∼E T ′1
and T2 ∼E T ′2 and e1 ∼E e2 : T1, then 〈T1

•⇒T2〉l e1 'E

〈T ′1
•⇒T ′2〉l e2 : T2.

Lemma [Relating classic and eidetic source programs (B.4)]:

1. If Γ `C e : T as a source program then Γ ` e 'E e : T .
2. If `C T as a source program then T ∼E T .

6. Bounds for space efficiency
We have claimed that eidetic λH is space efficient: what do we
mean? What sort of space efficiency have we achieved? We sum-
marize the results in Table 1; proofs are in Appendix C. From a
high level, there are only a finite number of types that appear in
our programs, and this set of types can only reduce as the program
runs. We can effectively code each type in the program as an inte-
ger, allowing us to efficiently run the ⊃ predicate.

Suppose that a type of height h can be represented in Wh bits
and a label in L bits. (Type heights are defined in Figure 7 in
Appendix C.) Casts in classic λH each take up 2Wh + L bits: two
types and a blame label. Coercions in eidetic λH have a different
form: the only types recorded are those of height 1, i.e., refinements
of base types. Pessimistically, each of these may appear at every
position in a function coercion c1 7→ c2. We use s to indicate the
“size” of a function type, i.e., the number of positions it has. As
a first pass, a set of refinements and blame labels take up 2L+W1

space. But in fact these coercions must all be between refinements

of the same base type, leading to 2L+WB space per coercion, where
WB is the highest number of refinements of any single base type.
We now have our worst-case space complexity: s2L+WB . A more
precise bound might track which refinements appear in which parts
of a function type, but in the worst case—each refinement appears
in every position—it degenerates to the bound we give here. Classic
λH can have an infinite number of “pending casts”—casts and
function proxies—in a program. Eidetic λH can have no more than
one pending cast per term node. Abstractions are limited to a single
function proxy, and E CASTMERGEE merges adjacent pending
casts.

The text of a program e is finite, so the set of types appear-
ing in the program, types(e), is also finite. Since reduction doesn’t
introduce types, we can bound the number of types in a program
(and therefore the size of casts). We can therefore fix a numerical
coding for types at runtime, where we can encode a type in W =
log2(|types(e)|) bits. In a given cast, W over-approximates how
many types can appear: the source, target, and annotation must all
be compatible, which means they must also be of the same height.
We can therefore represent the types in casts with fewer bits:Wh =
log2(|{T | T ∈ types(e) ∧ height(T) = h}|). In the worst case,
we revert to the original bound: all types in the program are of
height 1. Even so, there are never casts between different base types
B and B ′, so WB = maxB log2(|{{x :B | e} ∈ types(e)}|). Ei-
detic λH’s coercions never hold types greater than height 1. The
types on its casts are erasable once the coercions are generated,
because coercions drive the checking.

6.1 Representation choices
The bounds we find here are galactic. Having established that con-
tracts are theoretically space efficient, making an implementation
practically space efficient is a different endeavor, involving careful
choices of representations and calling conventions.

Eidetic λH’s space bounds rely only on the reflexivity of the
⊃ predicate, since we leave it abstract. We have identified one
situation where the relation allows us to find better space bounds:
mutual implication.

If {x :B | e1} ⊃ {x :B | e2} and {x :B | e2} ⊃ {x :B | e1},
then these two types are equivalent, and only one ever need be
checked. Which to check could be determined by a compiler with
a suitably clever cost model. Note that our proofs don’t entirely
justify this optimization. By default, our join operator will take
whichever of {x :B | e1} and {x :B | e2} was meant to be checked
first. Adapting join to always choose one based on some preference
relation would not be particularly hard, and we believe the proofs
adapt easily.

Other analyses of the relation seem promising at first, but in
fact do not allow more compact representations. Suppose we have
a program where {x :B | e1} ⊃ {x :B | e2} but not vice versa, and
that B is our worst case type. That is, WB = 2, because there are
2 different refinements of B and fewer refinements of other base
types. The worst-case representation for a refinement list is 2 bits,
with bit bi indicating whether ei is present in the list. Can we do any
better than 2 bits, since e1 can stand in for e2? Could we represent
the two types as just 1 bit? We cannot when (a) there are constants
that pass one type but not the other and (b) when refinement lists
are in the reverse order of implication. Suppose there is some k
such that e2[k/x] −→∗E true and e1[k/x] −→∗E false. Now we
consider a concatenation of refinement lists in the reverse ordering:
join({x :B | e2}l , {x :B | e1}l

′
). We must retain both checks, since

different failures lead to different blame. The k that passes e2 but
not e1 should raise ⇑l ′, but other k ′ that fail for both types should
raise ⇑l . One bit isn’t enough to capture the situation of having the
coercion {x :B | e2}l , {x :B | e1}l

′
.

Finally, what is the right representation for a function? When
calling a function, do we need to run coercions or not? Jeremy Siek
suggested a “smart closure” which holds the logic for branching
inside its own code; this may support better branch prediction than
an indirect jump or branching at call sites.

7. Related work
Some earlier work uses first-class casts, whereas our casts are
always applied to a term [1, 17]. It is of course possible to η-expand
a cast with an abstraction, so no expressiveness is lost. Leaving
casts fully applied saves us from the puzzling rules managing
how casts work on other casts in space-efficient semantics, like:
〈T11→T12

•⇒T21→T22〉l 〈T11
•⇒T12〉l

′
−→F 〈T21

•⇒T22〉l.
Previous approaches to space-efficiency have focused on grad-

ual typing [27]. This work uses coercions [14], casts, casts anno-
tated with intermediate types a/k/a threesomes, or some combina-
tion of all three [8, 16, 24, 26, 28]. Recent work relates all three
frameworks, making particular use of coercions [25]. Our type
structure differs from that of gradual types, so our space bounds
come in a somewhat novel form. Gradual types, without the more
complicated checking that comes with predicate contracts, allow
for simpler designs. Siek and Wadler [28] can define a simple re-
cursive operator on labeled types with a strong relationship to sub-
typing, the fundamental property of casts. We haven’t been able to
discover a connection in our setting. Instead, we ignore the type
structure of functions and focus our attention on managing labels
in lists of first-order predicate contracts. In the gradual world, only
Rastogi et al. [23] take a similar approach, “recursively decon-
struct[ing] higher-order types down to their first-order parts” when
they compute the closure of flows into and out of type variables.
Gradual types occasionally have simpler proofs, too, e.g., by in-
duction on evaluation [24]; even when strong reasoning principles
are needed, the presence of dynamic types leads them to use bisim-
ulation [8, 25, 28]. We use logical relations because λH’s type struc-
ture is readily available, and because they allow us to easily reason
about how checks evaluate.

Our coercions are inspired by Henglein’s coercions for model-
ing injection to and projection from the dynamic type [14]. Hen-
glein’s primitive coercions tag and untag values, while ours repre-
sent checks to be performed on base types; both our formulation
and Henglein’s use structural function coercions.

Greenberg [9], the most closely related work, offers a coercion
language combining the dynamic types of Henglein’s original work
with predicate contracts; his EFFICIENT language does not quite
achieve “sound” space efficeincy. Rather, it is forgetful, occasion-
ally dropping casts. He omits blame, though he conjectures that
blame for coercions reads left to right (as it does in Siek and Gar-
cia [26]); our eidetic λH verifies this conjecture. While Greenberg’s
languages offer dynamic, simple, and refined types, our types here
are entirely refined. His coercions use Henglein’s ! and ? syntax for
injection and projection, while our coercions lack such a distinc-
tion. In our refinement lists, each coercion simultaneously projects
from one refinement type and injects into another (possibly produc-
ing blame). We reduce notation by omitting the interrobang ‘?!’.

Dimoulas et al. [3] introduce option contracts, which offer a
programmatic way of turning off contract checking, as well as a
controlled way to “pass the buck”, handing off contracts from com-
ponent to component. Option contracts address time efficiency, not
space efficiency. Findler et al. [6] studied space and time efficiency
for datatype contracts, as did Koukoutos and Kuncak [19].

Racket contracts have a mild form of space efficiency: the
tail-marks-match? predicate1 checks for exact duplicate con-
tracts and blame at tail positions. The redundancy it detects seems

1 From racket/collects/racket/contract/private/arrow.rkt.

to rely on pointer equality. Since Racket contracts are (a) module-
oriented “macro” contracts and (b) first class, this optimization is
somewhat unpredictable—and limited compared with our eidetic
calculus, which can handle differing contracts and blame labels.

8. Conclusion and future work
Semantics-preserving space efficiency for manifest contracts is
possible—leaving the admissibility of state as the final barrier to
practical utility. We established that eidetic λH behaves exactly like
its classic counterpart without compromising space usage.

We believe it would be easy to design a latent version of eidetic
λH, following the translations in Greenberg et al. [11].

In our simple (i.e., not dependent) case, our refinement types
close over a single variable of base type. Space efficiency for a de-
pendent calculus remains open. The first step towards dependent
types would be extending⊃ with a context (and a source of closing
substitutions, a serious issue [1]). In a dependent setting the defi-
nition of what it means to compare closures isn’t at all clear. Clo-
sures’ environments may contain functions, and closures over ex-
tensionally equivalent functions may not be intensionally equal. A
more nominal approach to contract comparison may resolve some
of the issues here. Comparisons might be more straightforward
when contracts are explicitly declared and referenced by name.
Similarly, a dependent ⊃ predicate might be more easily defined
over some explicit structured family of types, like a lattice. Findler
et al. [6] has made some progress in this direction.

Finally, a host of practical issues remain. Beyond representation
choices, having expensive checks makes it important to predict
when checks happen. The ⊃ predicate compares closures and will
surely have delicate interactions with optimizations.

Acknowledgments
Comments from Rajeev Alur, Ron Garcia, Fritz Henglein, Greg

Morrisett, Stephanie Weirich, Phil Wadler, and Steve Zdancewic
improved a previous version of this work done at the University of
Pennsylvania. Some comments from Benjamin Pierce led me to re-
alize that a cast formulation was straightforward. Discussions with
Atsushi Igarashi, Robby Findler, and Sam Tobin-Hochstadt greatly
improved the quality of the exposition. Phil Wadler encouraged me
to return to coercions to understand the eidetic formulation. The
POPL reviewers had many excellent suggestions, and Robby Find-
ler helped once more with angelic guidance. Hannah de Keijzer
proofread the paper.

This work was supported in part by the NSF under grants TC
0915671 and SHF 1016937 and by the DARPA CRASH program
through the United States Air Force Research Laboratory (AFRL)
under Contract No. FA8650-10-C-7090. The views expressed are
the author’s and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

References
[1] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic

contracts. In European Symposium on Programming (ESOP), 2011.

[2] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Se-
mantic subtyping with an SMT solver. In International Conference on
Functional Programming (ICFP), 2010.

[3] C. Dimoulas, R. Findler, and M. Felleisen. Option contracts. In
OOPSLA, pages 475 – 494, 2013.

[4] R. B. Findler. Contracts as pairs of projections. In Symposium on
Logic Programming, 2006.

[5] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In International Conference on Functional Programming (ICFP),
2002.

[6] R. B. Findler, S.-Y. Guo, and A. Rogers. Lazy contract checking
for immutable data structures. In Implementation and Application of
Functional Languages, pages 111–128. 2008. .

[7] C. Flanagan. Hybrid type checking. In Principles of Programming
Languages (POPL), 2006.

[8] R. Garcia. Calculating threesomes, with blame. In International
Conference on Functional Programming (ICFP), 2013.

[9] M. Greenberg. Manifest Contracts. PhD thesis, University of Penn-
sylvania, November 2013.

[10] M. Greenberg. Space-efficient manifest contracts, 2014. URL http:
//arxiv.org/abs/1410.2813. Technical report.

[11] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In Principles of Programming Languages (POPL), 2010.

[12] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made mani-
fest. Journal of Functional Programming (JFP), 22(3):225–274, May
2012.

[13] J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In
Trends in Functional Programming (TFP), 2007.

[14] F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput.
Program., 22(3):197–230, 1994. .

[15] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
In Trends in Functional Programming (TFP), pages 404–419, 2007.

[16] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher Order Symbol. Comput., 23(2):167–189, June 2010. .

[17] K. Knowles and C. Flanagan. Hybrid type checking. ACM Trans.
Prog. Lang. Syst., 32:6:1–6:34, 2010.

[18] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop, 2006.

[19] E. Koukoutos and V. Kuncak. Checking data structure properties
orders of magnitude faster. In Runtime Verification, pages 263–268.
2014. .

[20] R. Lipton, October 2010. URL http://goo.gl/6Grgt0.

[21] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, Aug. 1978.

[22] PLT. Racket contract system, 2013. URL http://pre.
plt-scheme.org/docs/html/guide/contracts.html.

[23] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In Principles of Programming Languages (POPL),
2012. .

[24] J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In Programming Languages and Systems, volume 5502 of
LNCS, pages 17–31. 2009. .

[25] J. Siek, P. Thiemann, and P. Wadler. Blame, coercion, and threesomes:
Together again for the first time. 2015. URL http://homepages.
inf.ed.ac.uk/wadler/topics/blame.html#coercions.

[26] J. G. Siek and R. Garcia. Interpretations of the gradually-typed lambda
calculus. In Scheme and Functional Programming (SFP), 2012.

[27] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, September 2006.

[28] J. G. Siek and P. Wadler. Threesomes, with and without blame. In
Principles of Programming Languages (POPL), pages 365–376, 2010.
.

[29] N. Swamy, M. Hicks, and G. M. Bierman. A theory of typed coercions
and its applications. In International Conference on Functional Pro-
gramming (ICFP), pages 329–340, 2009. ISBN 978-1-60558-332-7.
.

[30] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From
scripts to programs. In OOPSLA, 2006. .

[31] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP), 2009.

[32] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1994.

http://arxiv.org/abs/1410.2813
http://arxiv.org/abs/1410.2813
http://goo.gl/6Grgt0
http://pre.plt-scheme.org/docs/html/guide/contracts.html
http://pre.plt-scheme.org/docs/html/guide/contracts.html
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#coercions
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#coercions

A. Proofs of type soundness
This appendix includes the proofs of type soundness for all four
modes of λH; we first prove some universally applicable metatheo-
retical properties.

A.1 Generic metatheory
A.1 Lemma [Weakening]: If Γ1,Γ2 `m e : T and `m T ′ and x
is fresh, then `m Γ1, x :T ′,Γ2 and Γ1, x :T ′,Γ2 `m e : T .

A.2 Lemma [Substitution]: If Γ1, x :T ′,Γ2 `m e : T and ∅ `m
e ′ : T ′, then Γ1,Γ2 `m e[e ′/x] : T and `m Γ1,Γ2.

A.3 Lemma [Regularity]: If Γ `m e : T , then `m Γ and `m T .

A.4 Lemma [Similarity is reflexive]: If ` T ‖ T .

Proof: By induction on T .

(T = {x :B | e}) By S REFINE.
(T = T1→T2) By S FUN and the IHs.

�

A.5 Lemma [Similarity is symmetric]: If ` T1 ‖ T2, then `
T2 ‖ T1.

Proof: By induction on the similarity derivation.

(S REFINE) By S REFINE.
(S FUN) By S FUN and the IHs.

�

A.6 Lemma [Similarity is transitive]: If ` T1 ‖ T2 and ` T2 ‖
T3, then ` T1 ‖ T3.

Proof: By induction on the derivation of ` T1 ‖ T2.

(S REFINE) The other derivation must also be by S REFINE;
by S REFINE.

(S FUN) The other derivation must also be by S FUN; by
S FUN and the IHs.

�

A.7 Lemma [Well formed type sets have similar indices]:
If `m S ‖ T1 ⇒ T2 then ` T1 ‖ T2.

Proof: Immediate, by inversion. �

A.8 Lemma [Type set well formedness is symmetric]: `m a ‖
T1 ⇒ T2 iff `m a ‖ T2 ⇒ T1 for all m 6= E.

Proof: We immediately have `m T1 and `m T2, and ` T1 ‖ T2

iff ` T2 ‖ T1 by Lemma A.5.
If m = C or m = F, then by A NONE and symmetry of

similarity (Lemma A.5.
If m = H, then let T ∈ S be given. The `H T premises hold

immediately; we are then done by transitivity (Lemma A.6) and
symmetry (Lemma A.5) of similarity (` T ‖ T1 iff ` T ‖ T2

when ` T1 ‖ T2). �

A.9 Lemma [Type set well formedness is transitive]: If ` T1 ‖
T2 and `m a ‖ T2 ⇒ T3 and `m T1 and m 6= E then
`m a ‖ T1 ⇒ T3.

Proof: We immediately have `m T1 and `m T3; we have ` T1 ‖
T3 by transitivity of similarity (Lemma A.6).

If m = C or m = F, we are done immediately by A NONE.
If, on the other hand, m = H, let T ∈ S be given. We know that

`H T and ` T ‖ T2; by symmetry (Lemma A.5) and transitivity
(Lemma A.6) of similarity, we are done by A TYPESET. �

A.2 Classic type soundness
A.10 Lemma [Classic determinism]: If e −→C e1 and e −→C

e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. �

A.11 Lemma [Classic canonical forms]: If ∅ `C e : T and
valC e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗C true.

– If T = T1→T2, then either e = λx :T . e ′ or e =
〈T11→T12

•⇒T21→T22〉l e ′.

A.12 Lemma [Classic progress]: If ∅ `C e : T , then either:

1. resultC e , i.e., e = ⇑l or valC e; or
2. there exists an e ′ such that e −→C e ′.

Proof: By induction on the typing derivation. �

A.13 Lemma [Classic preservation]: If ∅ `C e : T and e −→C

e ′, then ∅ `C e ′ : T .

Proof: By induction on the typing derivation. �

A.3 Eidetic type soundness
A.14 Lemma [Determinism of eidetic λH]: If e −→E e1 and
e −→E e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. In every
case, only a single step can be taken. �

A.15 Lemma [Eidetic canonical forms]: If ∅ `E e : T and
valE e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗E true.

– If T = T21→T22, then either e = λx :T . e ′ or e =
〈T11→T12

c1 7→c2⇒ T21→T22〉• λx :T11. e
′.

A.16 Lemma [Eidetic progress]: If ∅ `E e : T , then either:

1. resultE e , i.e., e = ⇑l or valE e; or
2. there exists an e ′ such that e −→E e ′.

Proof: By induction on the typing derivation. �

A.17 Lemma [Extended refinement lists are well formed]:
If `E {x :B | e} and `E r ‖ {x :B | e1} ⇒ {x :B | e2} then
`E join({x :B | e}l , r) ‖ {x :B | e1} ⇒ {x :B | e2}.
Proof: By cases on the rule used.

(A REFINE) All of the premises are immediately restored ex-
cept in one tricky case. When {x :B | e} ⊃ {x :B | e ′} where
{x :B | e ′} ∈ r is the only type implying {x :B | e2}. Then
drop (r , {x :B | e}) isn’t well formed on its own, but adding
{x :B | e}l makes it so by transitivity. If not, then we know that
drop (r , {x :B | e}) is well formed, and so is its extensions by
assumption.

We know that there are no duplicates by reflexivity of ⊃.
(A FUN) Contradictory.

�

A.18 Lemma [Merged coercions are well formed]: If `E c1 ‖
T1 ⇒ T2 and `E c2 ‖ T2 ⇒ T3 then `E join(c1, c2) ‖ T1 ⇒ T3.

Proof: By induction on c1’s typing derivation.

(A REFINE) By the IH, Lemma A.17, and A REFINE.
(A FUN) By the IHs and A FUN.

�

A.19 Lemma [coerce generates well formed coercions]:
If ` T1 ‖ T2 then `E coerce(T1,T2, l) ‖ T1 ⇒ T2.

Proof: By induction on the similarity derivation.

(S REFINE) By A REFINE, with coerce({x :B | e1}, {x :B |
e2}, l) = {x :B | e2}l .

(S FUN) By A FUN and the IHs.

�

A.20 Lemma [Eidetic preservation]: If ∅ `E e : T and e −→E

e ′ then ∅ `E e ′ : T .

Proof: By induction on the typing derivation. �

A.21 Lemma [Source program typing for eidetic λH]: Source
programs are well typed in C iff they are well typed in E, i.e.:

– Γ `C e : T as a source program iff Γ `E e : T as a source
program.

– `C T as a source program iff `E T as a source program.
– `C Γ as a source program iff `E Γ as a source program.

Proof: By mutual induction on e , T , and Γ. �

B. Proofs of space-efficiency soundness
B.1 Lemma [Idempotence of coercions]: If ∅ `E k : {x :B | e1}
and `E join(r1, r2) ‖ {x :B | e1} ⇒ {x :B | e2}, then for

all resultE e , we have 〈{x :B | e1}
join(r1,drop (r2,{x :B|e1}))⇒ {x :B |

e2}〉• k −→∗E e iff 〈{x :B | e1}
join(r1,r2)⇒ {x :B | e2}〉• k −→∗E e .

Proof: By induction on their evaluation derivations: the only dif-
ference is that the latter derivation performs some extra checks that
are implied by e1[k/x] −→∗E true—which we already know to
hold. �

As before, cast congruence is the key lemma in our proof—
in this case, the strongest property we have: reduction to identical
results.

B.2 Lemma [Cast congruence (single step)]: If

– ∅ `E e1 : T1 and `E c ‖ T1 ⇒ T2 (and so ∅ `E
〈T1

c⇒T2〉• e1 : T2),
– e1 −→E e2 (and so ∅ `E e2 : T1),

then for all resultE e , we have 〈T1
c⇒T2〉• e1 −→∗E e iff

〈T1
c⇒T2〉• e2 −→∗E e .

Proof: By cases on the step taken to find e1 −→E e2. �

Our proof strategy is as follows: we show that the casts be-
tween related types are applicative, and then we show that well
typed source programs in classic λH are logically related to their
translation. Our definitions are in Figure 6. Our logical relation is
blame-exact. Like our proofs relating forgetful and heedful λH to
classic λH, we use the space-efficient semantics in the refinement
case and use space-efficient type indices.

B.3 Lemma [Similar casts are logically related]: If T1 ∼E T ′1
and T2 ∼E T ′2 and e1 ∼E e2 : T1, then 〈T1

•⇒T2〉l e1 'E

〈T ′1
•⇒T ′2〉l e2 : T2.

Proof: By induction on the invariant relation, using coercion con-
gruence in the function case when e2 is a function proxy. �

B.4 Lemma [Relating classic and eidetic source programs]:

1. If Γ `C e : T as a source program then Γ ` e 'E e : T .

Term type extraction types(e) : P(T)

types(x) = ∅
types(k) = ∅

types(λx :T . e) = types(T) ∪ types(e)

types(〈T1
a⇒T2〉l e) = types(T1) ∪ types(T2) ∪

types(a) ∪ types(e)
types(e1 e2) = types(e1) ∪ types(e2)

types(op(e1, . . . , en)) =
⋃

1≤i≤n types(ei)

types(〈{x :B | e1}, e2, k〉l) = types({x :B | e1}) ∪ types(e2)
types(〈{x :B | e1}, s, r , k , e〉•) =

types({x :B | e1}) ∪ types(r) ∪ types(e)
types(⇑l) = ∅

Type, type set, and coercion type extraction

types(T) : P(T)

types({x :B | e}) = {{x :B | e}} ∪ types(e)
types(T1→T2) = {T1→T2} ∪

types(T1) ∪ types(T2)

types(a) : P(T)

types(•) = ∅
types(nil) = ∅

types({x :B | e}l , r) = {{x :B | e}} ∪ types(r)
types(c1 7→ c2) = types(c1) ∪ types(c2)

Type height height(T)

height({x :B | e}) = 1
height(T1→T2) = 1 + maxi∈{1,2} height(Ti)

Figure 7. Type extraction and type height

2. If `C T as a source program then T ∼E T .

Proof: By mutual induction on the typing derivations. �

C. Proofs of bounds for space-efficiency
This section contains our definitions for collecting types in a pro-
gram and the corresponding proof of bounded space consumption
(for all modes at once).

We define a function collecting all of the distinct types that
appear in a program in Figure 7. If the type T = {x :Int | x ≥
0}→{y :Int | y 6= 0} appears in the program e , then types(e)
includes the type T itself along with its subparts {x :Int | x ≥ 0}
and {y :Int | y 6= 0}.

C.1 Lemma: types(e[e ′/x]) ⊆ types(e) ∪ types(e ′)

Proof: By induction on e . �

C.2 Lemma: types(dom(a)) ⊆ types(a)

Proof: This property is trivial when a = •.
Immediate when a = c1 7→ c2. �

C.3 Lemma: types(cod(a)) ⊆ types(a)

Proof: Similar to Lemma C.2. �

C.4 Lemma [Coercing types doesn’t introduce types]:
types(coerce(T1,T2, l)) ⊆ types(T1) ∪ types(T2)

Proof: By induction on T1 and T2. When they are refinements,
we have the coercion just being {x :B | e2}l . When they are
functions, by the IH. �

C.5 Lemma [Dropping types doesn’t introduce types]:
types(drop (r , {x :B | e})) ⊆ types(r)

Proof: By induction on r .

(r = nil) The two sides are immediately equal.
(r = {x :B | e ′}l , r ′) If {x :B | e ′} 6⊃ {x :B | e}, then the

two are identical. If not, then we have types(r ′) ⊆ types(r) by the
IH.

�

C.6 Lemma [Coercion merges don’t introduce types]:
types(join(r1, r2)) ⊆ types(r1) ∪ types(r2)

Proof: By induction on r1.

(r1 = nil) The two sides are immediately equal.
(r1 = {x :B | e}l , r ′1) Using Lemma C.5, we find:

types(join(r1, r2)) = {{x :B | e}} ∪
types(join(r ′1, drop (r2, {x :B | e})))

⊆ {{x :B | e}} ∪ types(r ′1) ∪
types(drop (r2, {x :B | e}))

⊆ {{x :B | e}} ∪ types(r ′1) ∪ types(r2)
= types(r1) ∪ types(r2)

�

C.7 Lemma [Reduction doesn’t introduce types]: If e −→m

e ′ then types(e ′) ⊆ types(e).

Proof: By induction on the step taken. �

	1 Introduction
	2 Function proxies
	3 Classic manifest contracts
	3.1 Core operational semantics
	3.2 Type system
	3.3 Metatheory

	4 Eidetic space efficiency
	4.1 Metatheory

	5 Soundness for space efficiency
	6 Bounds for space efficiency
	6.1 Representation choices

	7 Related work
	8 Conclusion and future work
	A Proofs of type soundness
	A.1 Generic metatheory
	A.2 Classic type soundness
	A.3 Eidetic type soundness

	B Proofs of space-efficiency soundness
	C Proofs of bounds for space-efficiency

